Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large Bacterial Population Colonized Land 2.75 Billion Years Ago

25.09.2012
There is evidence that some microbial life had migrated from the Earth's oceans to land by 2.75 billion years ago, though many scientists believe such land-based life was limited because the ozone layer that shields against ultraviolet radiation did not form until hundreds of millions years later.

But new research from the University of Washington suggests that early microbes might have been widespread on land, producing oxygen and weathering pyrite, an iron sulfide mineral, which released sulfur and molybdenum into the oceans.

"This shows that life didn't just exist in a few little places on land. It was important on a global scale because it was enhancing the flow of sulfate from land into the ocean," said Eva Stüeken, a UW doctoral student in Earth and space sciences.

In turn, the influx of sulfur probably enhanced the spread of life in the oceans, said Stüeken, who is the lead author of a paper presenting the research published Sunday (Sept. 23) in Nature Geoscience. The work also will be part of her doctoral dissertation.

Sulfur could have been released into sea water by other processes, including volcanic activity. But evidence that molybdenum was being released at the same time suggests that both substances were being liberated as bacteria slowly disintegrated continental rocks, she said.

If that is the case, it likely means the land-based microbes were producing oxygen well in advance of what geologists refer to as the "Great Oxidation Event" about 2.4 billion years ago that initiated the oxygen-rich atmosphere that fostered life as we know it.

In fact, the added sulfur might have allowed marine microbes to consume methane, which could have set the stage for atmospheric oxygenation. Before that occurred, it is likely large amounts of oxygen were destroyed by reacting with methane that rose from the ocean into the air.

"It supports the theory that oxygen was being produced for several hundred million years before the Great Oxidation Event. It just took time for it to reach higher concentrations in the atmosphere," Stüeken said.

The research examined data on sulfur levels in 1,194 samples from marine sediment formations dating from before the Cambrian period began about 542 million years ago. The processes by which sulfur can be added or removed are understood well enough to detect biological contributions, the researchers said.

The data came from numerous research projects during the last several decades, but in most cases those observations were just a small part of much larger studies. In an effort to provide consistent interpretation, Stüeken combed the research record for data that came from similar types of sedimentary rock and similar environments.

"The data has been out there for a long time, but people have ignored it because it is hard to interpret when it is not part of a large database," she said.

Co-authors are David Catling and Roger Buick, UW professors of Earth and space sciences. The work was funded by the National Science Foundation and the Virtual Planet Laboratory in the UW Department of Astronomy.

For more information, contact Stüeken at evast@uw.edu. 206-353-0790

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>