Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land-ocean connections

28.02.2012
Land-Ocean connections: Scientists discover how tree trunks, leaves and kukui nuts are indirectly feeding bottom fish in the submarine canyons off Moloka’i

Scientists from the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii – Manoa (UHM) and colleagues recently discovered that land-based plant material and coastal macroalgae indirectly support the increased abundances of bottom fish in submarine canyons, like those off the north shore of Moloka’i.

Less than a few miles from the shore, these underwater canyons connect to deep river valleys that cut across the landscape of north Moloka’i. The high elevation and forested landscapes along Moloka’i’s north shore provide plant material, including decomposing tree trunks, leaves and tons of kukui nuts, which enter the ocean via river valleys and ‘pile up’ on submarine canyon floors.

“In areas surrounded by very low productivity waters, this steady supply of organic matter to the canyons supports relatively high abundances of macro-invertebrates that live associated with the seafloor (either on top or in the top layers within the sediments), such as polychaete worms (related to earth worms), tiny crustaceans (amphipods, tanaids and isopods) and mollusks (like tiny clam- and snail-like creatures). Those invertebrates in turn serve as food for many fish species that live and feed near the seafloor,” says Fabio De Leo, lead author and PhD candidate at the UHM Department of Oceanography. “Areas surveyed outside the canyons showed very little contribution of plant and macroalgae material, providing support for our hypothesis that this material is really being channeled and accumulates mostly in the steep topography of the submarine canyons (i.e., a ‘canyon effect’),” completes De Leo.

De Leo, his PhD advisor (Dr. Craig Smith), colleagues from SOEST (Dr. Jeff Drazen), from the Hawaii Pacific University (Dr. Eric Vetter), and from the New Zealand National Institute of Water and Atmospheric Research (Dr. Ashley Rowden) used manned submersibles operated by the Hawaii Undersea Research Laboratory to perform numerous video transects in two submarine canyons off Moloka’i at depths ranging from 350 to 1,050 m (~1,000 to ~3,000 ft).

Equipped with high-definition cameras and powerful light strobes the submersibles flew above the seafloor to quantitatively assess the presence of plant and macroalgae material and to count and identify all fish species (see Figure). This was among the first studies to quantitatively survey fish assemblages deeper than ~350 m around Hawaii, gathering more than 13 hours of video altogether. Among the most abundant species found were the so-called ‘rattail’ fishes (family Macrouridae) and the ‘eel-like’ fishes (synaphobranchids and halosaurs). Giant shark specimens were also observed but only when the submersible was stationary and not during the video transects. Therefore, that species was not included in the quantitative analysis. De Leo narrates how scary it was when he got ‘face–to-face’ with a 10-foot ‘sixgill shark’ with only the submersible’s porthole separating his from the shark’s nose, as the giant approached the submersible and hit the thick glass window with its face.

“Wow, it was definitely a nerve-wracking sensation. I even dropped my video camera while trying to make good footage of the beast”.

The researchers also report some unexpected results. They found that this ‘canyon effect’ of enhancing fish abundances is obliterated at intermediate depths (around 650 m) coinciding exactly with the core of an oxygen minimum zone (OMZ) that flows around the Hawaiian archipelago around those depths. An OMZ is a layer of seawater usually at subsurface that has depleted oxygen concentrations due to several biological and chemical processes, including excess respiration by microbes. This may be indicating that the bottom fish species are somewhat sensitive to the low oxygen concentrations in the water.

This result corroborates previous studies that found low abundances and diversity of deep-sea scavenger animals at similar depths around Hawaii. “The expansion of OMZs in different parts of the oceans is of great concern among oceanographers, and it is thought to be one of the main effects related to climate/ocean warming”. De Leo attended the annual Ocean Sciences Meeting in Salt Lake City last week and reports that the expansion of these low oxygen ocean layers was one of the hot topics discussed at the meeting. “We should definitely keep track of near future and long term effects of expansion of low oxygen zones and how this will affect a variety of marine organisms, including fish.”

In hopes of understanding what other factors lead to an increase in the number and diversity of marine animals inside these abrupt topographic features, De Leo and colleagues are analyzing data on the abundance and diversity of macro-invertebrates that live associated with the seafloor in six other submarine canyons around Hawaii. There is an increasing body of evidence that suggests that canyons are a special type of topographic feature in the seafloor no matter in what oceanographic background they are located (i.e., highly productive continental margins or in a low productivity setting, such as an island margin like Hawaii).

“With the goal of protecting ecologically important habitat and preserving biodiversity, this information is crucial when performing marine spatial planning and designing networks of Marine Protected Areas,” says De Leo.

This research was supported by NOAA Ocean Exploration and by the Hawaii Undersea Research Laboratory.

Deep Sea Research Part I: Oceanographic Research Papers: The effect of submarine canyons and the oxygen minimum zone on deep-sea fish assemblages off Hawaii, http://dx.doi.org/10.1016/j.dsr.2012.01.014

Research Contact: Fabio De Leo, PhD candidate and Graduate Researcher, Department of Oceanography, University of Hawai`i at Manoa, fdeleo@hawaii.edu, 808-956-7750

SOEST Media Contact: Marcie Grabowski, (808) 956-3151, mworkman@hawaii.edu

The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai‘i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Marcie Grabowski | EurekAlert!
Further information:
http://www.soest.hawaii.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>