Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land-ocean connections

28.02.2012
Land-Ocean connections: Scientists discover how tree trunks, leaves and kukui nuts are indirectly feeding bottom fish in the submarine canyons off Moloka’i

Scientists from the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii – Manoa (UHM) and colleagues recently discovered that land-based plant material and coastal macroalgae indirectly support the increased abundances of bottom fish in submarine canyons, like those off the north shore of Moloka’i.

Less than a few miles from the shore, these underwater canyons connect to deep river valleys that cut across the landscape of north Moloka’i. The high elevation and forested landscapes along Moloka’i’s north shore provide plant material, including decomposing tree trunks, leaves and tons of kukui nuts, which enter the ocean via river valleys and ‘pile up’ on submarine canyon floors.

“In areas surrounded by very low productivity waters, this steady supply of organic matter to the canyons supports relatively high abundances of macro-invertebrates that live associated with the seafloor (either on top or in the top layers within the sediments), such as polychaete worms (related to earth worms), tiny crustaceans (amphipods, tanaids and isopods) and mollusks (like tiny clam- and snail-like creatures). Those invertebrates in turn serve as food for many fish species that live and feed near the seafloor,” says Fabio De Leo, lead author and PhD candidate at the UHM Department of Oceanography. “Areas surveyed outside the canyons showed very little contribution of plant and macroalgae material, providing support for our hypothesis that this material is really being channeled and accumulates mostly in the steep topography of the submarine canyons (i.e., a ‘canyon effect’),” completes De Leo.

De Leo, his PhD advisor (Dr. Craig Smith), colleagues from SOEST (Dr. Jeff Drazen), from the Hawaii Pacific University (Dr. Eric Vetter), and from the New Zealand National Institute of Water and Atmospheric Research (Dr. Ashley Rowden) used manned submersibles operated by the Hawaii Undersea Research Laboratory to perform numerous video transects in two submarine canyons off Moloka’i at depths ranging from 350 to 1,050 m (~1,000 to ~3,000 ft).

Equipped with high-definition cameras and powerful light strobes the submersibles flew above the seafloor to quantitatively assess the presence of plant and macroalgae material and to count and identify all fish species (see Figure). This was among the first studies to quantitatively survey fish assemblages deeper than ~350 m around Hawaii, gathering more than 13 hours of video altogether. Among the most abundant species found were the so-called ‘rattail’ fishes (family Macrouridae) and the ‘eel-like’ fishes (synaphobranchids and halosaurs). Giant shark specimens were also observed but only when the submersible was stationary and not during the video transects. Therefore, that species was not included in the quantitative analysis. De Leo narrates how scary it was when he got ‘face–to-face’ with a 10-foot ‘sixgill shark’ with only the submersible’s porthole separating his from the shark’s nose, as the giant approached the submersible and hit the thick glass window with its face.

“Wow, it was definitely a nerve-wracking sensation. I even dropped my video camera while trying to make good footage of the beast”.

The researchers also report some unexpected results. They found that this ‘canyon effect’ of enhancing fish abundances is obliterated at intermediate depths (around 650 m) coinciding exactly with the core of an oxygen minimum zone (OMZ) that flows around the Hawaiian archipelago around those depths. An OMZ is a layer of seawater usually at subsurface that has depleted oxygen concentrations due to several biological and chemical processes, including excess respiration by microbes. This may be indicating that the bottom fish species are somewhat sensitive to the low oxygen concentrations in the water.

This result corroborates previous studies that found low abundances and diversity of deep-sea scavenger animals at similar depths around Hawaii. “The expansion of OMZs in different parts of the oceans is of great concern among oceanographers, and it is thought to be one of the main effects related to climate/ocean warming”. De Leo attended the annual Ocean Sciences Meeting in Salt Lake City last week and reports that the expansion of these low oxygen ocean layers was one of the hot topics discussed at the meeting. “We should definitely keep track of near future and long term effects of expansion of low oxygen zones and how this will affect a variety of marine organisms, including fish.”

In hopes of understanding what other factors lead to an increase in the number and diversity of marine animals inside these abrupt topographic features, De Leo and colleagues are analyzing data on the abundance and diversity of macro-invertebrates that live associated with the seafloor in six other submarine canyons around Hawaii. There is an increasing body of evidence that suggests that canyons are a special type of topographic feature in the seafloor no matter in what oceanographic background they are located (i.e., highly productive continental margins or in a low productivity setting, such as an island margin like Hawaii).

“With the goal of protecting ecologically important habitat and preserving biodiversity, this information is crucial when performing marine spatial planning and designing networks of Marine Protected Areas,” says De Leo.

This research was supported by NOAA Ocean Exploration and by the Hawaii Undersea Research Laboratory.

Deep Sea Research Part I: Oceanographic Research Papers: The effect of submarine canyons and the oxygen minimum zone on deep-sea fish assemblages off Hawaii, http://dx.doi.org/10.1016/j.dsr.2012.01.014

Research Contact: Fabio De Leo, PhD candidate and Graduate Researcher, Department of Oceanography, University of Hawai`i at Manoa, fdeleo@hawaii.edu, 808-956-7750

SOEST Media Contact: Marcie Grabowski, (808) 956-3151, mworkman@hawaii.edu

The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai‘i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Marcie Grabowski | EurekAlert!
Further information:
http://www.soest.hawaii.edu

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>