Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrigation's Cooling Effects May Mask Warming--For Now

08.09.2010
If Water Runs Short, Some Regions May Suffer Significantly

Expanded irrigation has made it possible to feed the world’s growing billions—and it may also temporarily be counteracting the effects of climate change in some regions, say scientists in a new study. But some major groundwater aquifers, a source of irrigation water, are projected to dry up in coming decades from continuing overuse, and when they do, people may face the double whammy of food shortages and higher temperatures. A new study in the Journal of Geophysical Research pinpoints where the trouble spots may be.

“Irrigation can have a significant cooling effect on regional temperatures, where people live,” said the study’s lead author, Michael Puma, a hydrologist who works jointly with Columbia University’s Earth Institute and its affiliated NASA Goddard Institute for Space Studies. “An important question for the future is what happens to the climate if the water goes dry and the cooling disappears? How much warming is being hidden by irrigation?”

Scientists generally agree that in the last century, humans have warmed the planet about .7 degrees C (about 1.3 degrees F) by pumping vast amounts of carbon dioxide into the air. How much warmer earth will get depends not only on future carbon emissions but an array of other variables. For instance, earth’s oceans and vegetation have been absorbing a growing share of emissions, but recent studies suggest this uptake may be slowing. This could lead to more carbon dioxide in the air, and accelerated warming. On the other hand, humans are also cooling the planet to some degree, by releasing air-polluting particles that lower temperatures by reflecting the sun’s energy back into space. Pumping of vast amounts of heat-absorbing water onto crops is lowering temperatures in some regions as well, say the authors.

Scientists are just beginning to get a handle on irrigation’s impact. In a hundred years, the amount of irrigated farmland has grown four-fold, now covering an area four times the size of Texas. Puma and his coauthor, Benjamin Cook, a climatologist at Goddard and Columbia’s Lamont-Doherty Earth Observatory, are the first to look at the historic effects of mass watering on climate globally by analyzing temperature, precipitation and irrigation trends in a series of model simulations for the last century. They found that irrigation-linked cooling grew noticeably in the 1950s as irrigation rates exploded, and that more rain is now falling downstream of these heavily watered regions.

In warm, dry regions, irrigation increases the amount of water available for plants to release into the air through a process called evapotranspiration. When the soil is wet, part of the sun’s energy is diverted from warming the soil to vaporizing its moisture, creating a cooling effect. The same process explains why drying off in the sun after a swim at the beach can be so refreshing.

Globally, irrigation’s effect on climate is small—one-tenth of one degree C (about 0.2 degree F). But regionally, the cooling can match or exceed the impacts of greenhouse gases, say the scientists. For example, the study found some of the largest effects in India’s arid Indus River Basin, where irrigation may be cooling the climate up to 3 degrees C, (5.4 degrees F) and up to 1-2 degrees C in other heavily irrigated regions such as California’s Central Valley and parts of China. The study also found as much as .5 degree C cooling in heavily watered regions of Europe, Asia and North America during the summer.

The study suggests also that irrigation may be shaping the climate in other ways, by adding up to a millimeter per day of extra rain downwind of irrigated areas in Europe and parts of Asia. It also suggests that irrigation may be altering the pattern of the Asian monsoon, the rains that feed nearly half of the world’s population. These findings are more uncertain, the authors caution, and will require further research.

“Most previous modeling studies were idealized experiments used to explore potential impacts, but this is a much more realistic simulation of the actual impacts,” said David Lobell, a Stanford University scientist who studies climate impacts on agriculture and was not involved in the study. “Their results show some interesting differences by time period and region that will lead to more research and contribute to more accurate simulations of future climate, particularly in agricultural areas.”

Irrigation has increased because it boosts crop yields, supporting many millions of small farmers, said Upmanu Lall, head of the Columbia Water Center at the Earth Institute. But concern is growing that groundwater supplies in India and China may not keep up. “Near term and future climate predictions are essential for anticipating climate shocks and improving food security,” he said. “The study points to the importance of including irrigation in regional and global climate models so that we can anticipate precipitation and temperature impacts, and better manage our land, water and food in stressed environments.”

Kim Martineau | EurekAlert!
Further information:
http://www.earth.columbia.edu/articles/view/2726
http://www.ldeo.columbia.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>