Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrigation's Cooling Effects May Mask Warming--For Now

08.09.2010
If Water Runs Short, Some Regions May Suffer Significantly

Expanded irrigation has made it possible to feed the world’s growing billions—and it may also temporarily be counteracting the effects of climate change in some regions, say scientists in a new study. But some major groundwater aquifers, a source of irrigation water, are projected to dry up in coming decades from continuing overuse, and when they do, people may face the double whammy of food shortages and higher temperatures. A new study in the Journal of Geophysical Research pinpoints where the trouble spots may be.

“Irrigation can have a significant cooling effect on regional temperatures, where people live,” said the study’s lead author, Michael Puma, a hydrologist who works jointly with Columbia University’s Earth Institute and its affiliated NASA Goddard Institute for Space Studies. “An important question for the future is what happens to the climate if the water goes dry and the cooling disappears? How much warming is being hidden by irrigation?”

Scientists generally agree that in the last century, humans have warmed the planet about .7 degrees C (about 1.3 degrees F) by pumping vast amounts of carbon dioxide into the air. How much warmer earth will get depends not only on future carbon emissions but an array of other variables. For instance, earth’s oceans and vegetation have been absorbing a growing share of emissions, but recent studies suggest this uptake may be slowing. This could lead to more carbon dioxide in the air, and accelerated warming. On the other hand, humans are also cooling the planet to some degree, by releasing air-polluting particles that lower temperatures by reflecting the sun’s energy back into space. Pumping of vast amounts of heat-absorbing water onto crops is lowering temperatures in some regions as well, say the authors.

Scientists are just beginning to get a handle on irrigation’s impact. In a hundred years, the amount of irrigated farmland has grown four-fold, now covering an area four times the size of Texas. Puma and his coauthor, Benjamin Cook, a climatologist at Goddard and Columbia’s Lamont-Doherty Earth Observatory, are the first to look at the historic effects of mass watering on climate globally by analyzing temperature, precipitation and irrigation trends in a series of model simulations for the last century. They found that irrigation-linked cooling grew noticeably in the 1950s as irrigation rates exploded, and that more rain is now falling downstream of these heavily watered regions.

In warm, dry regions, irrigation increases the amount of water available for plants to release into the air through a process called evapotranspiration. When the soil is wet, part of the sun’s energy is diverted from warming the soil to vaporizing its moisture, creating a cooling effect. The same process explains why drying off in the sun after a swim at the beach can be so refreshing.

Globally, irrigation’s effect on climate is small—one-tenth of one degree C (about 0.2 degree F). But regionally, the cooling can match or exceed the impacts of greenhouse gases, say the scientists. For example, the study found some of the largest effects in India’s arid Indus River Basin, where irrigation may be cooling the climate up to 3 degrees C, (5.4 degrees F) and up to 1-2 degrees C in other heavily irrigated regions such as California’s Central Valley and parts of China. The study also found as much as .5 degree C cooling in heavily watered regions of Europe, Asia and North America during the summer.

The study suggests also that irrigation may be shaping the climate in other ways, by adding up to a millimeter per day of extra rain downwind of irrigated areas in Europe and parts of Asia. It also suggests that irrigation may be altering the pattern of the Asian monsoon, the rains that feed nearly half of the world’s population. These findings are more uncertain, the authors caution, and will require further research.

“Most previous modeling studies were idealized experiments used to explore potential impacts, but this is a much more realistic simulation of the actual impacts,” said David Lobell, a Stanford University scientist who studies climate impacts on agriculture and was not involved in the study. “Their results show some interesting differences by time period and region that will lead to more research and contribute to more accurate simulations of future climate, particularly in agricultural areas.”

Irrigation has increased because it boosts crop yields, supporting many millions of small farmers, said Upmanu Lall, head of the Columbia Water Center at the Earth Institute. But concern is growing that groundwater supplies in India and China may not keep up. “Near term and future climate predictions are essential for anticipating climate shocks and improving food security,” he said. “The study points to the importance of including irrigation in regional and global climate models so that we can anticipate precipitation and temperature impacts, and better manage our land, water and food in stressed environments.”

Kim Martineau | EurekAlert!
Further information:
http://www.earth.columbia.edu/articles/view/2726
http://www.ldeo.columbia.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>