Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Field Campaign Examines Impact of Beetle Kill on Rocky Mountain Weather, Air Quality

26.09.2008
By killing large swaths of forests in the Rocky Mountains, mountain pine beetles may be altering local weather patterns and air quality. NCAR is leading an international field project exploring how the loss of trees and other vegetation influences rainfall, temperatures, smog, and other aspects of the atmosphere.

Mountain pine beetles appear to be doing more than killing large swaths of forests in the Rocky Mountains. Scientists suspect they are also altering local weather patterns and air quality.

A new international field project, led by scientists at the National Center for Atmospheric Research (NCAR), is exploring how trees and other vegetation influence rainfall, temperatures, smog, and other aspects of the atmosphere. Plants take in and emit chemicals that affect the air, and they also absorb varying amounts of incoming heat from the Sun. When portions of a forest die, the local atmosphere can change in subtle ways.

"Forests help control the atmosphere, and there's a big difference between the impacts of a living forest and a dead forest," says NCAR scientist Alex Guenther, a principal investigator on the project. "With a dead forest, we may get different rainfall patterns, for example."

Launched this summer, the field project is scheduled to continue for four years over a region extending from southern Wyoming to northern New Mexico. Scientists plan to use aircraft and ground-based instruments, as well as computer models, to study interactions between the planet's surface and the atmosphere.

The project, known as BEACHON (pronounced "beacon"), is funded by the National Science Foundation, NCAR's sponsor. Organizations participating in the project include Colorado College, Colorado State University, Cornell University, Texas A&M University, and the universities of Colorado, Idaho, Minnesota, New Hampshire, and Washington, as well as the U.S. Forest Service, the Environmental Protection Agency, and universities in Austria, France, and Japan. BEACHON stands for Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics, and Nitrogen.

The impacts of vegetation

BEACHON will allow scientists to glean insights into such topics as cloud formation, climate change, and the cycling of gases and particles between the land and the atmosphere. Plants emit water vapor, other gases, and microscopic particles that influence the atmosphere in subtle and complex ways.

For example, some tiny airborne particles from plants rise into clouds and seed them, providing a surface for water droplets to adhere to and develop into raindrops. Greenhouse gases such as carbon dioxide (CO2), which is emitted in large quantities from beetle-devastated forests, combine with extra CO2 produced by human activities to influence the amount of heat from the Sun that reaches Earth or gets reflected back into space. Plants also emit chemicals known as volatile organic compounds that can interact with human-caused pollution to influence the formation of particles and ground-level ozone, or smog, affecting both air quality and local temperatures.

When large areas of trees are killed by pine beetles or other causes, these interactions are disrupted. This may change cloud and precipitation patterns for a decade or more, which can, in turn, further alter the land cover.

Preliminary computer modeling suggests that beetle kill can lead to temporary temperature increases of about 2-4 degrees Fahrenheit. This is partly because of a lack of foliage to reflect the Sun's heat back into space. Scientists also believe that beetle kill stimulates trees to release more particles and chemicals into the atmosphere as they try to fight off the insects. This worsens air quality, at least initially, by increasing levels of ground-level ozone and particulate matter.

Wildfires, clear-cutting, and new development also affect the atmosphere by removing vegetation. But the impacts in each case can vary significantly, depending on the remaining vegetation and changes to soil conditions.

The exchange of gases and particles between the surface and the atmosphere is critical in arid areas such as the western United States. Even slight changes in precipitation can have significant impacts on the region.

"Here in the western United States, it is particularly important to understand these subtle impacts on precipitation," Guenther says. "Rain and snow may become even more scarce in the future as the climate changes, and the growing population wants ever more water."

A long-term project

While other field projects have measured emissions from plants, BEACHON is unusual because it will continue for at least four years and cover an entire region. This will allow researchers to examine the impacts of emissions in different seasons and measure year-to-year changes.

To conduct measurements, researchers plan to use specially equipped aircraft as well as towers that are about 100 feet high and measure emissions above the forest canopy. Additional observations will come from a variety of soil and moisture sensors, instruments for gases and tiny particles, radars, and lidars, which are radar-like devices that use light instead of radio waves.

"BEACHON will give us a very comprehensive picture of a forest's impact on the atmosphere," Guenther says. "But at this point, we don't know what the project will reveal. We may end up with more questions than answers."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

Further reports about: Aerosols Air Quality Atmospheric BEACHON CO2 Mountain NCAR Plants Rocky Mountain Weather Vegetation beetle

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>