Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Field Campaign Examines Impact of Beetle Kill on Rocky Mountain Weather, Air Quality

26.09.2008
By killing large swaths of forests in the Rocky Mountains, mountain pine beetles may be altering local weather patterns and air quality. NCAR is leading an international field project exploring how the loss of trees and other vegetation influences rainfall, temperatures, smog, and other aspects of the atmosphere.

Mountain pine beetles appear to be doing more than killing large swaths of forests in the Rocky Mountains. Scientists suspect they are also altering local weather patterns and air quality.

A new international field project, led by scientists at the National Center for Atmospheric Research (NCAR), is exploring how trees and other vegetation influence rainfall, temperatures, smog, and other aspects of the atmosphere. Plants take in and emit chemicals that affect the air, and they also absorb varying amounts of incoming heat from the Sun. When portions of a forest die, the local atmosphere can change in subtle ways.

"Forests help control the atmosphere, and there's a big difference between the impacts of a living forest and a dead forest," says NCAR scientist Alex Guenther, a principal investigator on the project. "With a dead forest, we may get different rainfall patterns, for example."

Launched this summer, the field project is scheduled to continue for four years over a region extending from southern Wyoming to northern New Mexico. Scientists plan to use aircraft and ground-based instruments, as well as computer models, to study interactions between the planet's surface and the atmosphere.

The project, known as BEACHON (pronounced "beacon"), is funded by the National Science Foundation, NCAR's sponsor. Organizations participating in the project include Colorado College, Colorado State University, Cornell University, Texas A&M University, and the universities of Colorado, Idaho, Minnesota, New Hampshire, and Washington, as well as the U.S. Forest Service, the Environmental Protection Agency, and universities in Austria, France, and Japan. BEACHON stands for Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics, and Nitrogen.

The impacts of vegetation

BEACHON will allow scientists to glean insights into such topics as cloud formation, climate change, and the cycling of gases and particles between the land and the atmosphere. Plants emit water vapor, other gases, and microscopic particles that influence the atmosphere in subtle and complex ways.

For example, some tiny airborne particles from plants rise into clouds and seed them, providing a surface for water droplets to adhere to and develop into raindrops. Greenhouse gases such as carbon dioxide (CO2), which is emitted in large quantities from beetle-devastated forests, combine with extra CO2 produced by human activities to influence the amount of heat from the Sun that reaches Earth or gets reflected back into space. Plants also emit chemicals known as volatile organic compounds that can interact with human-caused pollution to influence the formation of particles and ground-level ozone, or smog, affecting both air quality and local temperatures.

When large areas of trees are killed by pine beetles or other causes, these interactions are disrupted. This may change cloud and precipitation patterns for a decade or more, which can, in turn, further alter the land cover.

Preliminary computer modeling suggests that beetle kill can lead to temporary temperature increases of about 2-4 degrees Fahrenheit. This is partly because of a lack of foliage to reflect the Sun's heat back into space. Scientists also believe that beetle kill stimulates trees to release more particles and chemicals into the atmosphere as they try to fight off the insects. This worsens air quality, at least initially, by increasing levels of ground-level ozone and particulate matter.

Wildfires, clear-cutting, and new development also affect the atmosphere by removing vegetation. But the impacts in each case can vary significantly, depending on the remaining vegetation and changes to soil conditions.

The exchange of gases and particles between the surface and the atmosphere is critical in arid areas such as the western United States. Even slight changes in precipitation can have significant impacts on the region.

"Here in the western United States, it is particularly important to understand these subtle impacts on precipitation," Guenther says. "Rain and snow may become even more scarce in the future as the climate changes, and the growing population wants ever more water."

A long-term project

While other field projects have measured emissions from plants, BEACHON is unusual because it will continue for at least four years and cover an entire region. This will allow researchers to examine the impacts of emissions in different seasons and measure year-to-year changes.

To conduct measurements, researchers plan to use specially equipped aircraft as well as towers that are about 100 feet high and measure emissions above the forest canopy. Additional observations will come from a variety of soil and moisture sensors, instruments for gases and tiny particles, radars, and lidars, which are radar-like devices that use light instead of radio waves.

"BEACHON will give us a very comprehensive picture of a forest's impact on the atmosphere," Guenther says. "But at this point, we don't know what the project will reveal. We may end up with more questions than answers."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

Further reports about: Aerosols Air Quality Atmospheric BEACHON CO2 Mountain NCAR Plants Rocky Mountain Weather Vegetation beetle

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>