Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact atlas catalogs over 635,000 Martian craters

12.06.2012
It¡¯s no secret that Mars is a beaten and battered planet ¡ª astronomers have been peering for centuries at the violent impact craters created by cosmic buckshot pounding its surface over billions of years. But just how beat up is it?

Really beat up, according to researchers who recently finished counting, outlining and cataloging a staggering 635,000 impact craters on Mars that are roughly a kilometer or more in diameter.

As the largest single database ever compiled of impacts on a planet or moon in our solar system, the new information will be of help in dating the ages of particular regions of Mars, said Stuart Robbins, a postdoctoral researcher at the University of Colorado, Boulder (CU-Boulder), who led the effort. The new crater atlas also should help researchers better understand the history of water volcanism on Mars through time, as well as the planet¡¯s potential for past habitability by primitive life, he said.

¡°This database is a giant tool that will be helpful in scores of future Mars studies ranging from age-dating and erosion to planetary habitability and to other applications we have not even thought of yet,¡± said Robbins, who is affiliated with the university¡¯s Laboratory for Atmospheric and Space Physics (LASP).

A paper on the subject by Robbins and Brian Hynek, also of CU Boulder, appeared last week in the Journal of Geophysical Research ¨C Planets, a publication of the American Geophysical Union. A companion study by the two researchers was published in a recent issue of the same journal.

The assembly of the new Mars crater database was tedious, said Robbins. ¡°We have all this new information coming from Mars orbiters and landers that have helped generate far better maps illustrating the planet¡¯s topography and surface details. I basically analyzed maps and drew crater rim circles for four years.¡±

Hynek said knowing more about the history and extent of Martian cratering has implications for better understanding the potential for past life on Mars. Hynek is a LASP research associate and assistant professor in the geological sciences department.

¡°Many of the large impact craters generated hydrothermal systems that could have created unique, locally habitable environments that lasted for thousands or millions of years, assuming there was water in the planet¡¯s crust at the time,¡± said Hynek. ¡°But large impacts also have the ability to wipe out life forms, as evident from Earth¡¯s dinosaur-killing Chicxulub impact 65 million years ago.¡±

Robbins said most of the smaller diameter craters on Mars are younger than the largest craters and form the bulk of the planet¡¯s crater population. ¡°The basic idea of age dating is that if a portion of the planet¡¯s surface has more craters, it has been around longer,¡± said Robbins. Much of the planet has been ¡°resurfaced¡± by volcanic and erosional activity, essentially erasing older geological features, including craters.

The new database also is expected to help planetary scientists better understand erosion on the planet, said Robbins. ¡°Our crater database contains both rim heights and crater depths, which can help us differentiate between craters that have been filled in versus those that have eroded by different processes over time, giving us a better idea about long-term changes on the planet¡¯s surface.¡±

Having a better handle on the size and distribution of Martian impact craters also has implications for future, manned missions to the planet, said Hynek. NASA wants to know where the craters are and their particular features both from a safety and research standpoint. ¡°Craters act as a ¡®poor man¡¯s drill¡¯ that provide new information about the subsurface of Mars,¡± he said.

Since the most complete databases of lunar craters include only those roughly 10 to 15 kilometers in diameter or larger, and databases on Mercury¡¯s craters contain only those over roughly 20 kilometers in diameter, it is difficult to compare them with the Martian crater database, said Robbins. While there are only about 150 to 200 known impact craters left on Earth, both the moon and Mercury are still peppered with craters due to their lack of atmosphere and plate tectonic activity, he said.

Cataloging the cratering of Mars and the moon is helping scientists understand a time a few hundred million years after the inner solar system formed, including an event about 3.9 billion years ago known as the ¡°Late Heavy Bombardment¡± in which asteroids as large as Kansas rained down on Earth. ¡°Although Earth has lost most of its geologic record due to tectonic plate movements and erosion, understanding the impact crater history on the moon and Mars can help us reconstruct our early days,¡± said Hynek.

NASA¡¯s Mars Data Analysis Program funded the crater study.

Title:

¡°A new global database of Mars impact craters ¡Ý1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter¡±

Authors:
Stuart J. Robbins and Brian M. Hynek Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA

Contact information for the authors:

Stuart Robbins, Telephone: 303-918-5589 Email: stuart.robbins@colorado.edu

Brian Hynek, 303-735-4312, Email: Brian.Hynek@colorado.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2012/2012-28.shtml

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>