Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Ice Melts, Antarctic Bedrock is on the Move

17.12.2008
As ice melts away from Antarctica, parts of the continental bedrock are rising in response -- and other parts are sinking, scientists have discovered.

The finding will give much needed perspective to satellite instruments that measure ice loss on the continent, and help improve estimates of future sea level rise.

"Our preliminary results show that we can dramatically improve our estimates of whether Antarctica is gaining or losing ice," said Terry Wilson, associate professor of earth sciences at Ohio State University.

Wilson reported the research in a press conference Monday, December 15, 2008 at the American Geophysical Union meeting in San Francisco.

These results come from a trio of global positioning system (GPS) sensor networks on the continent.

Wilson leads POLENET, a growing network of GPS trackers and seismic sensors implanted in the bedrock beneath the West Antarctic Ice Sheet (WAIS). POLENET is reoccupying sites previously measured by the West Antarctic GPS Network (WAGN) and the Transantarctic Mountains Deformation (TAMDEF) network.

In separate sessions at the meeting, Michael Bevis, Ohio Eminent Scholar in geodyamics and professor of earth sciences at Ohio State, presented results from WAGN, while doctoral student Michael Willis presented results from TAMDEF.

Taken together, the three projects are yielding the best view yet of what's happening under the ice.

When satellites measure the height of the WAIS, scientists calculate ice thickness by subtracting the height of the earth beneath it. They must take into account whether the bedrock is rising or falling. Ice weighs down the bedrock, but as the ice melts, the earth slowly rebounds.

Gravity measurements, too, rely on knowledge of the bedrock. As the crust under Antarctica rises, the mantle layer below it flows in to fill the gap. That mass change must be subtracted from Gravity Recovery and Climate Experiment (GRACE) satellite measurements in order to isolate gravity changes caused by the thickening or thinning of the ice.

Before POLENET and its more spatially limited predecessors, scientists had few direct measurements of the bedrock. They had to rely on computer models, which now appear to be incorrect.

"When you compare how fast the earth is rising, and where, to the models of where ice is being lost and how much is lost -- they don't match," Wilson said. "There are places where the models predict no crustal uplift, where we see several millimeters of uplift per year. We even have evidence of other places sinking, which is not predicted by any of the models."

A few millimeters may sound like a small change, but it's actually quite large, she explained. Crustal uplift in parts of North America is measured on the scale of millimeters per year.

POLENET's GPS sensors measure how much the crust is rising or falling, while the seismic sensors measure the stiffness of the bedrock -- a key factor for predicting how much the bedrock will rise in the future.

"We're pinning down both parts of this problem, which will improve the correction made to the satellite data, which will in turn improve what we know about whether we're gaining ice or losing ice," Wilson said. Better estimates of sea level rise can then follow.

POLENET scientists have been implanting sensors in Antarctica since December 2007. The network will be complete in 2010 and will record data into 2012. Selected sites may remain as a permanent Antarctic observational network.

Scientists around the world can access POLENET data online, and schools can access educational resources as part of the International Polar Year.

Ohio State's POLENET partners in the United States are Pennsylvania State University, the University of Texas at Austin, New Mexico Tech, Washington University, the Jet Propulsion Laboratory, and the University of Memphis. A host of international partners are part of the effort as well.

POLENET is funded by the National Science Foundation.

Contact: Terry Wilson, (614) 292-0723; Wilson.43@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>