Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane Ike tracked by ESA’s Envisat

12.09.2008
Residents along the Gulf Coast are bracing for Hurricane Ike as it travels over the Gulf of Mexico after ripping through Cuba and Haiti. ESA’s Envisat satellite is tracking the storm, which is forecast to make landfall on the Texas coast by 13 September.

Knowing the strength and path of hurricanes is critical for issuing timely warnings. Earth observation (EO) satellites are key means of providing synoptic data on the forces that power the storm, such as cloud structure, wind and wave fields, sea surface temperature and sea surface height.

Thanks to Envisat’s unique capability to acquire optical and radar imagery over the same area of the Earth simultaneously, the top and bottom of a hurricane can be viewed at the same time. The unique view of Hurricane Ike on the left is an example of combined optical and radar images, showing the swirling cloud-tops and the shape of the wind-driven sea surface.

Moreover, satellite-based radar instruments have the capability of penetrating heavy clouds and precipitations and can provide day and night high-resolution observations of critical ocean parameters, such as local wind, waves and currents over a 400-km-wide region.

Using these capabilities specific to radar satellites, Dr Bertrand Chapron of IFREMER, the French Research Institute for Exploitation of the Sea, and Dr Fabrice Collard of France's CLS radar application division in Brest, have developed sets of algorithms that allow data from the Advanced Synthetic Aperture Radar (ASAR) instrument aboard Envisat to be processed in Near-Real Time (NRT) and to produce state-of-the-art ocean parameters.

Taking advantage of the broad availability of Envisat ASAR wide swath acquisitions taken over the hurricane region, the corresponding sea surface roughness map, wind speed map and surface current are made widely available on the SOPRANO ocean products demonstration website developed with ESA.

"The knowledge of hurricane eye details, the radius of very high winds, details on the swell fields, and the new information on atmosphere feedback to ocean surface velocity will certainly help coupled ocean-atmosphere models to better predict hurricane track and intensity," Dr Chapron said.

As clearly revealed for Hurricane Ike, wind speeds around the hurricane’s eye can far exceed 40m/s (about 80 knots).

The sea surface roughness map clearly shows a minimum in the well-delineated eye where the conditions are relatively calm. Around the eye of the storm, the sea surface velocities also capture the circular direction of the prevailing wind and waves, as visible in this image over Great Inagua Island in the Bahamas on 7 September.

This analysis of the residual Doppler from the radar echoes allows for the retrieval of radial velocities which are used to provide systematically and in Near Real Time a map of the radial component of sea surface velocity.

The colour of the graphics shown in the ‘current’ section is representative of a very strong eastward motion in the southern part of the hurricane and a symmetrical strong westward motion in the northern part. These observations are clearly in line with the hurricane winds turning counter clockwise.

In the future, these combined instantaneous wind speed, wave heights and surface velocity maps will be integrated into models to improve storm track and intensity forecasts.

"Sentinel-1, the follow on to Envisat’s SAR mission, will have an improved instrument capability with dual polarisation and higher imaging resolution, and will benefit from this demonstration to achieve better winds accuracy in extreme conditions," Dr Collard said.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/
http://www.esa.int/esaEO/SEM23LP4KKF_index_0.html

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>