Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High pressure experiments reproduce mineral structures 1,800 miles deep

24.09.2010
Crystal structure of post-perovskite explains anisotropic seismic wave propagation

University of California, Berkeley, and Yale University scientists have recreated the tremendous pressures and high temperatures deep in the Earth to resolve a long-standing puzzle: why some seismic waves travel faster than others through the boundary between the solid mantle and fluid outer core.

Below the earth's crust stretches an approximately 1,800-mile-thick mantle composed mostly of a mineral called magnesium silicate perovskite (MgSiO3). Below this depth, the pressures are so high that perovskite is compressed into a phase known as post-perovskite, which comprises a layer 125 miles thick at the core-mantle boundary. Below that lies the earth's iron-nickel core.

Understanding the physics of post-perovskite, and therefore the physics of the core-mantle boundary, has proven tough because of the difficulty of recreating the extreme pressure and temperature at such depths.

The researchers, led by Yale post-doctoral fellow Lowell Miyagi, a former UC Berkeley graduate student, used a diamond-anvil cell to compress an MgSiO3 glass to nearly 1.4 million times atmospheric pressure and heated it to 3,500 Kelvin (more than 3,000 degrees Celsius, or nearly 6,000 degrees Fahrenheit) to create a tiny rock of post-perovskite. They then further compressed this to 2 million times atmospheric pressure and zapped the substance with an intense X-ray beam from the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to obtain a diffraction picture that reveals the deformation behavior of post-perovskite.

They found that the orientation of post-perovskite's crystals in the deformed rock allowed some seismic waves – those polarized parallel to the core-mantle boundary – to travel faster than those polarized perpendicular to it. This anisotropic structure may explain the observations of seismologists using seismic waves to probe the earth's interior.

"For the first time, we can use mineral physics with diamond-anvil cells at the ALS to get information about how this mineral, post-perovskite, performs under intense pressure," said co-author Hans-Rudolf Wenk, a Professor of the Graduate School in UC Berkeley's Department of Earth and Planetary Science and Miyagi's Ph.D. thesis advisor. "People had suggested this as an explanation for the anisotropy, but now we have experimental evidence."

"Understanding how post-perovskite behaves is a good start to understanding what's happening near the mantle's lower reaches," Miyagi said. "We can now begin to interpret flow patterns in this deep layer in the earth."

The study, which appears in the Sept. 24 issue of the journal Science, has important implications for understanding how the earth's internal heating and cooling processes work.

"This will give seismologists confidence in their models by matching what these observations predict with the seismic data they get," said coauthor Waruntorn "Jane" Kanitpanyacharoen, a UC Berkeley graduate student.

Post-perovskite was first recognized as a high-pressure phase in the mantle in 2004, and subsequent experiments in diamond-anvil cells have produced the mineral. Wenk and his colleagues in 2007 conducted experiments that they thought had determined the deformation behavior of post-perovskite, but which now appear to have been related to the phase transformation to post-perovskite. This transition takes place at about 1,300,000 times atmospheric pressure (127 gigaPascals) and 2,500 Kelvin (4,000 degrees Fahrenheit).

The current experiment showed that post-perovskite's crystal structure is deformed by pressure into a more elongated shape. Because seismic waves travel faster in the stretched direction, this matches the observed difference in velocity between seismic waves polarized horizontally and vertically traveling through the post-perovskite zone above the earth's core.

If scientists can gain a better understanding of the core-mantle boundary's behavior, it will give them clues as to how Earth's internal convection works there, where cool tectonic plates descend from the ocean floor through the mantle eventually nearing the dense, liquid-iron outer core, heat up, and begin moving upward again in a repeated cycle that mixes material and heat through the mantle.

Other authors of the paper include UC Berkeley researcher Pamela Kaercher and Kanani K. M. Lee, assistant professor of geology and geophysics at Yale.

The work was funded by the National Science Foundation, with support for the ALS from the U.S. Department of Energy.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>