Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hazy shades of life on early Earth

19.03.2012
A 'see-sawing' atmosphere over 2.5 billion years ago preceded the oxygenation of our planet and the development of complex life on Earth, a new study has shown.
Research, led by experts at Newcastle University, UK, and published today in the journal Nature Geoscience, reveals that the Earth's early atmosphere periodically flipped from a hydrocarbon-free state into a hydrocarbon-rich state similar to that of Saturn's moon, Titan.

This switch between "organic haze" and a "haze-free" environment was the result of intense microbial activity and would have had a profound effect on the climate of the Earth system.

Similar to the way scientists believe our climate behaves today, the team say their findings provide us with an insight into the Earth's surface environment prior to oxygenation of the planet.

Study lead Dr Aubrey Zerkle, based in the School of Civil Engineering and Geosciences at Newcastle University, explains: "Models have previously suggested that the Earth's early atmosphere could have been warmed by a layer of organic haze.

"Our geochemical analyses of marine sediments from this time period provide the first evidence for such an atmosphere.

"However, instead of evidence for a continuously 'hazy' period we found the signal flipped on and off, in response to microbial activity.

"This provides us with insight into Earth's surface environment prior to oxygenation of the planet and confirms the importance of methane gas in regulating the early atmosphere."

Dr Zerkle, working along with Dr James Farquhar at the University of Maryland, USA, and Dr Simon Poulton at Newcastle University, UK, analysed the geochemistry of marine sediments deposited between 2.65 and 2.5 billion years ago in what is now South Africa.

They found evidence of local production of oxygen by microbes in the oceans, but carbon and sulphur isotopes indicate that little of that oxygen entered the atmosphere.

Instead, the authors suggest that the atmosphere transitioned repeatedly between two states: one with a thin, hydrocarbon haze and the other haze-free. These geochemical records were supported by models of the ancient atmosphere performed by colleagues at the NASA Astrobiology Institute, led by Dr Mark Claire (currently at the University of East Anglia, UK) and Dr Shawn Domagal-Goldman, which demonstrated how the transitions could be caused by changes in the rate of methane production by microbes.
The conditions which enabled the bi-stable organic haze to form permanently ended when the atmosphere became oxygenated some 100 million years after the sediments were laid down.

"What is most surprising about this study is that our data seems to indicate the atmospheric events were discrete in nature, flip-flopping between one stable state into another," explains co-author Dr Farquhar.

"This type of response is not all that different from the way scientists think climate operates today, and reminds us how delicate the balance between states can be."

Professor Mark Thiemens, Dean of Physical Sciences at the University of California San Diego, adds: "Another important facet of the work is that it provides insight into the formation of atmospheric aerosols, particularly organic ones.

"Besides the obvious importance for the evolution of the atmosphere, the role of aerosol formation is one of the most poorly understood components in the present day climate models. This provides a new look into this process that is quite new and valuable."

Dr. Aubrey Zerkle | EurekAlert!
Further information:
http://www.newcastle.ac.uk

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>