Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Good as Gold

11.05.2011
Similar to humans, the bacteria and tiny plants living in the ocean need iron for energy and growth. But their situation is quite different than ours — for one, they can’t exactly turn to natural iron sources like leafy greens or red meat for a pick-me-up.

So where does their iron come from? New research published by "Nature Geoscience" points to a source on the seafloor: minute particles (called nanoparticles) of pyrite, or fool’s gold, from hydrothermal vents at the bottom of the ocean.

Scientists already knew the vents’ cloudy plumes emitted from the earth’s interior include pyrite particles, but they thought they were solids that settled back on the ocean bottom. A University of Delaware team has shown that the vents emit a significant amount of pyrite as nanoparticles, which have a diameter that is one thousand times smaller than that of a human hair. Because the nanoparticles are so small, they are dispersed into the ocean rather than falling to the bottom.

Barbara Ransom, program director in the agency that funded the research, the National Science Foundation’s Division of Ocean Sciences, called the discovery "very exciting."

"These particles have long residence times in the ocean and can travel long distances from their sources, forming a potentially important food source for life in the deep sea," she said.

UD Oceanography Professor and project collaborator George Luther explained the importance of the pyrite’s lengthy residence times, or how long they exist in their current form. He said the pyrite, which consists of iron and sulfur as iron disulfide, does not rapidly react with oxygen in the seawater to form oxidized iron, or "rust," allowing it to stay intact and move throughout the ocean better than other forms of iron.

"As pyrite travels from the vents to the ocean interior and toward the surface ocean, it oxidizes gradually to release iron, which becomes available in areas where iron is depleted so that organisms can assimilate it, then grow," Luther said. "It’s an ongoing iron supplement for the ocean much as Geritol or multivitamins are for humans."

Growth of the bacteria and tiny plants, known as phytoplankton, can affect atmospheric oxygen and carbon dioxide levels.

Much of the research for the paper, which the journal published on its website on May 8, was completed by alumnus Mustafa Yücel while working on his doctorate with Luther at UD.

The project also received support from Delaware EPSCoR. It involved scientific cruises to the South Pacific and East Pacific Rise using the manned deep-sea submersible Alvin and the remotely operated vehicle Jason, both operated by the Woods Hole Oceanographic Institution.

About the UD research team

George Luther is Maxwell P. and Mildred H. Harrington Professor of Oceanography; Mustafa Yücel earned his doctorate in oceanography from UD in fall 2009 and now holds a post-doctorate position at Benthic Ecogeochemistry Laboratory of France’s Pierre and Marie Curie University (Paris 6) at Banyuls Marine Station; Clara Chan is an assistant professor of geological sciences; and Amy Gartman is an oceanography doctoral student studying with Luther.

Nature Geoscience abstract: http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1148.html

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>