Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As Good as Gold

11.05.2011
Similar to humans, the bacteria and tiny plants living in the ocean need iron for energy and growth. But their situation is quite different than ours — for one, they can’t exactly turn to natural iron sources like leafy greens or red meat for a pick-me-up.

So where does their iron come from? New research published by "Nature Geoscience" points to a source on the seafloor: minute particles (called nanoparticles) of pyrite, or fool’s gold, from hydrothermal vents at the bottom of the ocean.

Scientists already knew the vents’ cloudy plumes emitted from the earth’s interior include pyrite particles, but they thought they were solids that settled back on the ocean bottom. A University of Delaware team has shown that the vents emit a significant amount of pyrite as nanoparticles, which have a diameter that is one thousand times smaller than that of a human hair. Because the nanoparticles are so small, they are dispersed into the ocean rather than falling to the bottom.

Barbara Ransom, program director in the agency that funded the research, the National Science Foundation’s Division of Ocean Sciences, called the discovery "very exciting."

"These particles have long residence times in the ocean and can travel long distances from their sources, forming a potentially important food source for life in the deep sea," she said.

UD Oceanography Professor and project collaborator George Luther explained the importance of the pyrite’s lengthy residence times, or how long they exist in their current form. He said the pyrite, which consists of iron and sulfur as iron disulfide, does not rapidly react with oxygen in the seawater to form oxidized iron, or "rust," allowing it to stay intact and move throughout the ocean better than other forms of iron.

"As pyrite travels from the vents to the ocean interior and toward the surface ocean, it oxidizes gradually to release iron, which becomes available in areas where iron is depleted so that organisms can assimilate it, then grow," Luther said. "It’s an ongoing iron supplement for the ocean much as Geritol or multivitamins are for humans."

Growth of the bacteria and tiny plants, known as phytoplankton, can affect atmospheric oxygen and carbon dioxide levels.

Much of the research for the paper, which the journal published on its website on May 8, was completed by alumnus Mustafa Yücel while working on his doctorate with Luther at UD.

The project also received support from Delaware EPSCoR. It involved scientific cruises to the South Pacific and East Pacific Rise using the manned deep-sea submersible Alvin and the remotely operated vehicle Jason, both operated by the Woods Hole Oceanographic Institution.

About the UD research team

George Luther is Maxwell P. and Mildred H. Harrington Professor of Oceanography; Mustafa Yücel earned his doctorate in oceanography from UD in fall 2009 and now holds a post-doctorate position at Benthic Ecogeochemistry Laboratory of France’s Pierre and Marie Curie University (Paris 6) at Banyuls Marine Station; Clara Chan is an assistant professor of geological sciences; and Amy Gartman is an oceanography doctoral student studying with Luther.

Nature Geoscience abstract: http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo1148.html

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>