Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Extinction: Gradual Doom as Bad as Abrupt

07.02.2012
In "The Great Dying" 250 million years ago, the end came slowly

The deadliest mass extinction of all took a long time to kill 90 percent of Earth's marine life--and it killed in stages--according to a newly published report.


The geology of Griesbach Creek in the Arctic tells an ancient tale of slow extinction.
Credit: C.M. Henderson

It shows that mass extinctions need not be sudden events.

Thomas Algeo, a geologist at the University of Cincinnati, and 13 colleagues have produced a high-resolution look at the geology of a Permian-Triassic boundary section on Ellesmere Island in the Canadian Arctic.

Their analysis, published today in the Geological Society of America Bulletin, provides strong evidence that Earth's biggest mass extinction phased in over hundreds of thousands of years.

About 252 million years ago, at the end of the Permian period, Earth almost became a lifeless planet.

Around 90 percent of all living species disappeared then, in what scientists have called "The Great Dying."

Algeo and colleagues have spent much of the past decade investigating the chemical evidence buried in rocks formed during this major extinction.

The world revealed by their research is a devastated landscape, barren of vegetation and scarred by erosion from showers of acid rain, huge "dead zones" in the oceans, and runaway greenhouse warming leading to sizzling temperatures.

The evidence that Algeo and his colleagues are looking at points to massive volcanism in Siberia as a factor.

"The scientists relate this extinction to Siberian Traps volcanic eruptions, which likely first affected boreal life through toxic gas and ashes," said H. Richard Lane, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research.

The Siberian Traps form a large region of volcanic rock in Siberia. The massive eruptive event which formed the traps, one of the largest known volcanic events of the last 500 million years of Earth's geologic history, continued for a million years and spanned the Permian-Triassic boundary.

The term "traps" is derived from the Swedish word for stairs--trappa, or trapp--referring to the step-like hills that form the landscape of the region.

A large portion of western Siberia reveals volcanic deposits up to five kilometers (three miles) thick, covering an area equivalent to the continental United States. The lava flowed where life was most endangered, through a large coal deposit.

"The eruption released lots of methane when it burned through the coal," Algeo said. "Methane is 30 times more effective as a greenhouse gas than carbon dioxide.

"We're not sure how long the greenhouse effect lasted, but it seems to have been tens or hundreds of thousands of years."

Much of the evidence was washed into the ocean, and Algeo and his colleagues look for it among fossilized marine deposits.

Previous investigations have focused on deposits created by a now vanished ocean known as Tethys, a precursor to the Indian Ocean. Those deposits, in South China particularly, record a sudden extinction at the end of the Permian.

"In shallow marine deposits, the latest Permian mass extinction was generally abrupt," Algeo said. "Based on such observations, it has been widely inferred that the extinction was a globally synchronous event."

Recent studies are starting to challenge that view.

Algeo and co-authors focused on rock layers at West Blind Fiord on Ellesmere Island in the Canadian Arctic.

That location, at the end of the Permian, would have been much closer to the Siberian volcanoes than sites in South China.

The Canadian sedimentary rock layers are 24 meters (almost 80 feet) thick and cross the Permian-Triassic boundary, including the latest Permian mass extinction horizon.

The investigators looked at how the type of rock changed from the bottom to the top. They looked at the chemistry of the rocks and at the fossils contained in the rocks.

They discovered a total die-off of siliceous sponges about 100,000 years earlier than the marine mass extinction event recorded at Tethyan sites.

What appears to have happened, according to Algeo and his colleagues, is that the effects of early Siberian volcanic activity, such as toxic gases and ash, were confined to the northern latitudes.

Only after the eruptions were in full swing did the effects reach the tropical latitudes of the Tethys Ocean.

The research was also supported by the Canadian Natural Sciences and Engineering Research Council and the National Aeronautics and Space Administration Exobiology Program.

In addition to Algeo, co-authors of the paper are: Charles Henderson, University of Calgary; Brooks Ellwood, Louisiana State University; Harry Rowe, University of Texas at Arlington; Erika Elswick, Indiana University, Bloomington; Steven Bates and Timothy Lyons, University of California, Riverside; James Hower, University of Kentucky; Christina Smith and Barry Maynard, University of Cincinnati; Lindsay Hays and Roger Summons, Massachusetts Institute of Technology; James Fulton, Woods Hole Oceanographic Institution; and Katherine Freeman, Pennsylvania State University.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Greg Hand, University of Cincinnati (513) 556-1822 handgl@ucmail.uc.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>