Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Extinction: Gradual Doom as Bad as Abrupt

07.02.2012
In "The Great Dying" 250 million years ago, the end came slowly

The deadliest mass extinction of all took a long time to kill 90 percent of Earth's marine life--and it killed in stages--according to a newly published report.


The geology of Griesbach Creek in the Arctic tells an ancient tale of slow extinction.
Credit: C.M. Henderson

It shows that mass extinctions need not be sudden events.

Thomas Algeo, a geologist at the University of Cincinnati, and 13 colleagues have produced a high-resolution look at the geology of a Permian-Triassic boundary section on Ellesmere Island in the Canadian Arctic.

Their analysis, published today in the Geological Society of America Bulletin, provides strong evidence that Earth's biggest mass extinction phased in over hundreds of thousands of years.

About 252 million years ago, at the end of the Permian period, Earth almost became a lifeless planet.

Around 90 percent of all living species disappeared then, in what scientists have called "The Great Dying."

Algeo and colleagues have spent much of the past decade investigating the chemical evidence buried in rocks formed during this major extinction.

The world revealed by their research is a devastated landscape, barren of vegetation and scarred by erosion from showers of acid rain, huge "dead zones" in the oceans, and runaway greenhouse warming leading to sizzling temperatures.

The evidence that Algeo and his colleagues are looking at points to massive volcanism in Siberia as a factor.

"The scientists relate this extinction to Siberian Traps volcanic eruptions, which likely first affected boreal life through toxic gas and ashes," said H. Richard Lane, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research.

The Siberian Traps form a large region of volcanic rock in Siberia. The massive eruptive event which formed the traps, one of the largest known volcanic events of the last 500 million years of Earth's geologic history, continued for a million years and spanned the Permian-Triassic boundary.

The term "traps" is derived from the Swedish word for stairs--trappa, or trapp--referring to the step-like hills that form the landscape of the region.

A large portion of western Siberia reveals volcanic deposits up to five kilometers (three miles) thick, covering an area equivalent to the continental United States. The lava flowed where life was most endangered, through a large coal deposit.

"The eruption released lots of methane when it burned through the coal," Algeo said. "Methane is 30 times more effective as a greenhouse gas than carbon dioxide.

"We're not sure how long the greenhouse effect lasted, but it seems to have been tens or hundreds of thousands of years."

Much of the evidence was washed into the ocean, and Algeo and his colleagues look for it among fossilized marine deposits.

Previous investigations have focused on deposits created by a now vanished ocean known as Tethys, a precursor to the Indian Ocean. Those deposits, in South China particularly, record a sudden extinction at the end of the Permian.

"In shallow marine deposits, the latest Permian mass extinction was generally abrupt," Algeo said. "Based on such observations, it has been widely inferred that the extinction was a globally synchronous event."

Recent studies are starting to challenge that view.

Algeo and co-authors focused on rock layers at West Blind Fiord on Ellesmere Island in the Canadian Arctic.

That location, at the end of the Permian, would have been much closer to the Siberian volcanoes than sites in South China.

The Canadian sedimentary rock layers are 24 meters (almost 80 feet) thick and cross the Permian-Triassic boundary, including the latest Permian mass extinction horizon.

The investigators looked at how the type of rock changed from the bottom to the top. They looked at the chemistry of the rocks and at the fossils contained in the rocks.

They discovered a total die-off of siliceous sponges about 100,000 years earlier than the marine mass extinction event recorded at Tethyan sites.

What appears to have happened, according to Algeo and his colleagues, is that the effects of early Siberian volcanic activity, such as toxic gases and ash, were confined to the northern latitudes.

Only after the eruptions were in full swing did the effects reach the tropical latitudes of the Tethys Ocean.

The research was also supported by the Canadian Natural Sciences and Engineering Research Council and the National Aeronautics and Space Administration Exobiology Program.

In addition to Algeo, co-authors of the paper are: Charles Henderson, University of Calgary; Brooks Ellwood, Louisiana State University; Harry Rowe, University of Texas at Arlington; Erika Elswick, Indiana University, Bloomington; Steven Bates and Timothy Lyons, University of California, Riverside; James Hower, University of Kentucky; Christina Smith and Barry Maynard, University of Cincinnati; Lindsay Hays and Roger Summons, Massachusetts Institute of Technology; James Fulton, Woods Hole Oceanographic Institution; and Katherine Freeman, Pennsylvania State University.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Greg Hand, University of Cincinnati (513) 556-1822 handgl@ucmail.uc.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>