Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glaciers in Tibet – never really large

04.06.2010
The Tibetan Plateau is the largest and highest mountain region on Earth with glaciers whose meltwater provides the water supply for more than 1.3 billion people through several of the largest rivers in Asia.

In a thesis in Physical Geography from Stockholm University, Jakob Heyman shows that the glaciers in Tibet have remained relatively small and have not been much larger than today for tens of thousands to hundreds of thousands of years back in time.

The study deals with the growth and decay of glaciers in Tibet far back in time, with the aim of attaining better knowledge of glaciations and their link to climate variations. The results show that the glaciers in Tibet have varied in size but that they have been fairly small far back in time.

In several places the glaciers seems to have been similar in size to today’s glaciers or just slightly larger during the entire last Ice Age. Considering that Tibet, often called the roof of the world or the third pole, is where the largest number of glaciers outside the polar regions are located, this is remarkable.

“At the same time as huge ice sheets covered northern Europe and North America during the last Ice Age twenty thousand years ago, the glaciers in Tibet were not much larger than today,” says Jakob Heyman.

The field data can be used, together with a mathematical model for the growth of a glacier, to find out how large the climatic variations have been during the last Ice Age. Preliminary results show that the climate was probably somewhat colder than today but was nevertheless relatively stable.

“If today’s temperature in Tibet were to decrease by five degrees or more, which is not much for an Ice Age cycle, a large ice sheet would probably start growing. No ice sheet seems to have existed in Tibet, and the cooling can therefore not have been that strong,” says Jakob Heyman.

To determine how large the glaciers have been, satellite images have been used to find landforms created by former glaciers, and field studies have been performed to find sediments and erratic boulders deposited during past glaciations. To find out when the ice disappeared, samples have been collected from boulders left by the ice and the number of particular isotopes formed in quartz when hit by cosmic rays has been measured. Because the cosmic ray intensity is known, the number of isotopes can be used to calculate the age for when the boulders were melted out of the ice.

Title of dissertation: Palaeoglaciology of the northeastern Tibetan Plateau

For more information
Jakob Heyman, Department of Physical Geography and Quaternary Geology, Stockholm University, tel +46 730-521979, +46 8-164787, e-mail jakob.heyman@natgeo.su.se

Pressofficer Maria Skuldt, maria.skuldt@kommunikation.su.se; +46-722 333 385

Maria Skuldt | idw
Further information:
http://su.diva-portal.org/smash/record.jsf?pid=diva2:312664
http://www.su.se/pub/jsp/polopoly.jsp?d=12201&a=80574

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>