Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glacial advances

05.05.2009
Glaciers in the Southern Hemisphere are growing out of step with those in the North

The vast majority of the world's glaciers are retreating as the planet gets warmer. But a few, including glaciers south of the equator in South America and New Zealand, are inching forward.

A paper in this week's issue of the journal Science puts this enigma in perspective; for the last 7,000 years, New Zealand's largest glaciers have often moved out of step with glaciers in the Northern Hemisphere, pointing to strong regional variations in climate.

"This research should provide much more accurate reconstructions of glacial advances worldwide, allowing us in turn to make climate models more accurate," said Paul Filmer, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research.

Conventional wisdom holds that during the era of human civilization, climate has been relatively stable. The new study is the latest to challenge this view, by showing that New Zealand's glaciers have gone through rapid periods of growth and decline during the current interglacial period known as the Holocene.

"New Zealand's mountain glaciers have fluctuated frequently over the last 7,000 years, and glacial advances have become slightly smaller through time," said Joerg Schaefer, lead author of the paper and a geochemist at Columbia University's Lamont-Doherty Earth Observatory.

"This pattern differs in important ways from the northern hemisphere glaciers. The door is open now towards a global map of Holocene [a geological time period that began about 11,700 years ago and continues to the present] glacier fluctuations and how climate variations during this period impacted human civilizations."

Glaciers are extremely sensitive to changes in temperature and snowfall, which makes them well suited for studying past climate. This archive has been largely untapped, however, because of the difficulty in assigning precise ages to glacier fluctuations.

One way to measure glacial fluxes is by studying the moraines, or rock deposits that glaciers often leave behind at their maximum points of advance.

However, until now the methods of dating such moraines, including radiocarbon dating of organic matter, could be off by hundreds of years.

By refining the analysis of a method called cosmogenic dating, Schaefer and colleagues were able for the first time to assign precise ages to young Holocene moraines.

They accomplished this by measuring minute levels of the chemical isotope beryllium 10 in the rocks, which is produced when cosmic rays strike rock surfaces, and builds up over time.

The researchers were thus able to pinpoint exactly when glaciers in New Zealand's Southern Alps began to recede, exposing the rocks to the cosmic rays.

From the results, they constructed a glacial timeline for the past 7,000 years and compared it against historic records from the Swiss Alps and other places north of the equator.

They found that within that timeframe, the glaciers around Mount Cook, New Zealand's highest peak, reached their largest extent about 6,500 years ago, when the Swiss Alps and Scandinavia were relatively warm.

That's about 6,000 years before northern glaciers hit their Holocene peak during the Little Ice Age, between 1300 and 1860 AD.

That finding was a surprise to some scientists who assumed that the northern cold phase happened globally. The record in New Zealand shows other disparities that point to regional climate variations in both hemispheres.

The new chemical and analytical protocols are expected to allow scientists to accurately date glacier fluctuations throughout the Holocene, rounding out the climate picture on the continents.

"With this measure we can go to almost any mountain range on earth and date the moraines in front of the glaciers and produce a similar chronology," said co-author George Denton, a glaciologist at the University of Maine and an adjunct scientist at Lamont-Doherty.

Overall, glaciers around the world have been declining since about 1860, with the exception of a brief advance in Switzerland in the 1980s, New Zealand in the late 1970s through today, and a few other places.

Changes in wind and sea surface temperatures are thought to be causing these regional fluctuations.

Currently in a wet phase, New Zealand is expected to swing back to a warmer, drier phase in the next few years, causing the glaciers to retreat once again.

The study also received funding from the Comer Science and Education Foundation, and the New Zealand Foundation for Research, Science and Technology.

Other researchers involved in the study were: Michael Kaplan and Roseanne Schwartz, also of Lamont-Doherty; Aaron Putnam, University of Maine; Robert Finkel, CEREGE, France; David Barrell, GNS Science, New Zealand; Bjorn Anderson, University of Oslo; Andrew Mackintosh, Victoria University of Wellington, New Zealand; Trevor Chinn, Alpine and Polar Processes Consultancy, New Zealand; Christian Schluchter, University of Bern, Switzerland.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>