Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glacial advances

05.05.2009
Glaciers in the Southern Hemisphere are growing out of step with those in the North

The vast majority of the world's glaciers are retreating as the planet gets warmer. But a few, including glaciers south of the equator in South America and New Zealand, are inching forward.

A paper in this week's issue of the journal Science puts this enigma in perspective; for the last 7,000 years, New Zealand's largest glaciers have often moved out of step with glaciers in the Northern Hemisphere, pointing to strong regional variations in climate.

"This research should provide much more accurate reconstructions of glacial advances worldwide, allowing us in turn to make climate models more accurate," said Paul Filmer, program director in the National Science Foundation's (NSF) Division of Earth Sciences, which funded the research.

Conventional wisdom holds that during the era of human civilization, climate has been relatively stable. The new study is the latest to challenge this view, by showing that New Zealand's glaciers have gone through rapid periods of growth and decline during the current interglacial period known as the Holocene.

"New Zealand's mountain glaciers have fluctuated frequently over the last 7,000 years, and glacial advances have become slightly smaller through time," said Joerg Schaefer, lead author of the paper and a geochemist at Columbia University's Lamont-Doherty Earth Observatory.

"This pattern differs in important ways from the northern hemisphere glaciers. The door is open now towards a global map of Holocene [a geological time period that began about 11,700 years ago and continues to the present] glacier fluctuations and how climate variations during this period impacted human civilizations."

Glaciers are extremely sensitive to changes in temperature and snowfall, which makes them well suited for studying past climate. This archive has been largely untapped, however, because of the difficulty in assigning precise ages to glacier fluctuations.

One way to measure glacial fluxes is by studying the moraines, or rock deposits that glaciers often leave behind at their maximum points of advance.

However, until now the methods of dating such moraines, including radiocarbon dating of organic matter, could be off by hundreds of years.

By refining the analysis of a method called cosmogenic dating, Schaefer and colleagues were able for the first time to assign precise ages to young Holocene moraines.

They accomplished this by measuring minute levels of the chemical isotope beryllium 10 in the rocks, which is produced when cosmic rays strike rock surfaces, and builds up over time.

The researchers were thus able to pinpoint exactly when glaciers in New Zealand's Southern Alps began to recede, exposing the rocks to the cosmic rays.

From the results, they constructed a glacial timeline for the past 7,000 years and compared it against historic records from the Swiss Alps and other places north of the equator.

They found that within that timeframe, the glaciers around Mount Cook, New Zealand's highest peak, reached their largest extent about 6,500 years ago, when the Swiss Alps and Scandinavia were relatively warm.

That's about 6,000 years before northern glaciers hit their Holocene peak during the Little Ice Age, between 1300 and 1860 AD.

That finding was a surprise to some scientists who assumed that the northern cold phase happened globally. The record in New Zealand shows other disparities that point to regional climate variations in both hemispheres.

The new chemical and analytical protocols are expected to allow scientists to accurately date glacier fluctuations throughout the Holocene, rounding out the climate picture on the continents.

"With this measure we can go to almost any mountain range on earth and date the moraines in front of the glaciers and produce a similar chronology," said co-author George Denton, a glaciologist at the University of Maine and an adjunct scientist at Lamont-Doherty.

Overall, glaciers around the world have been declining since about 1860, with the exception of a brief advance in Switzerland in the 1980s, New Zealand in the late 1970s through today, and a few other places.

Changes in wind and sea surface temperatures are thought to be causing these regional fluctuations.

Currently in a wet phase, New Zealand is expected to swing back to a warmer, drier phase in the next few years, causing the glaciers to retreat once again.

The study also received funding from the Comer Science and Education Foundation, and the New Zealand Foundation for Research, Science and Technology.

Other researchers involved in the study were: Michael Kaplan and Roseanne Schwartz, also of Lamont-Doherty; Aaron Putnam, University of Maine; Robert Finkel, CEREGE, France; David Barrell, GNS Science, New Zealand; Bjorn Anderson, University of Oslo; Andrew Mackintosh, Victoria University of Wellington, New Zealand; Trevor Chinn, Alpine and Polar Processes Consultancy, New Zealand; Christian Schluchter, University of Bern, Switzerland.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>