Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant 'balloon of magma' inflates under Santorini

10.09.2012
A new survey suggests that the chamber of molten rock beneath Santorini's volcano expanded 10-20 million cubic metres – up to 15 times the size of London's Olympic Stadium – between January 2011 and April 2012.

The growth of this 'balloon' of magma has seen the surface of the island rise 8-14 centimetres during this period, a team led by Oxford University scientists has found.

The results come from an expedition, funded by the UK's Natural Environment Research Council, which used satellite radar images and Global Positioning System receivers (GPS) that can detect movements of the Earth's surface of just a few millimetres.

The findings are helping scientists to understand more about the inner workings of the volcano which had its last major explosive eruption 3,600 years ago, burying the islands of Santorini under metres of pumice. However, it still does not provide an answer to the biggest question of all: 'when will the volcano next erupt?'

A report of the research appears in this week's Nature Geoscience.

In January 2011, a series of small earthquakes began beneath the islands of Santorini. Most were so small they could only be detected with sensitive seismometers but it was the first sign of activity beneath the volcano to be detected for 25 years.

Following the earthquakes Michelle Parks, an Oxford University DPhil student, spotted signs of movement of the Earth's surface on Santorini in satellite radar images. Oxford University undergraduate students then helped researchers complete a new survey of the island.

Michelle Parks of Oxford University's Department of Earth Sciences, an author of the paper, said: 'During my field visits to Santorini in 2011, it became apparent that many of the locals were aware of a change in the behaviour of their volcano. The tour guides, who visit the volcano several times a day, would update me on changes in the amount of strong smelling gas being released from the summit, or changes in the colour of the water in some of the bays around the islands.

On one particular day in April 2011, two guides told me they had felt an earthquake while they were on the volcano and that the motion of the ground had actually made them jump. Locals working in restaurants on the main island of Thera became aware of the increase in earthquake activity due to the vibration and clinking of glasses in their bars.'

Dr Juliet Biggs of Bristol University, also an author of the paper, said: 'People were obviously aware that something was happening to the volcano, but it wasn't until we saw the changes in the GPS, and the uplift on the radar images that we really knew that molten rock was being injected at such a shallow level beneath the volcano. Many volcanologists study the rocks produced by old eruptions to understand what happened in the past, so it's exciting to use cutting-edge satellite technology to link that to what's going on in the volcanic plumbing system right now.'

Professor David Pyle of Oxford University's Department of Earth Sciences, an author of the paper, said: 'For me, the challenge of this project is to understand how the information on how the volcano is behaving right now can be squared with what we thought we knew about the volcano, based on the studies of both recent and ancient eruptions. There are very few volcanoes where we have such detailed information about their past history.'

The team calculate that the amount of molten rock that has arrived beneath Santorini in the past year is the equivalent of about 10-20 years growth of the volcano. But this does not mean that an eruption is about to happen: in fact the rate of earthquake activity has dropped off in the past few months.

Notes to editors

*A report of this research, entitled 'Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth', is published in the journal Nature Geosience, embargoed until 1800 UK time / 1300 US Eastern time on Sunday 09 September.

*Recent eruptions on Santorini have usually involved two different sorts of magma: a dominant, silica-rich lava called a dacite; and a much smaller amount of a hotter, more-silica-poor lava called andesite. Previous work has shown that eruptions appear to be triggered by the arrival of the andesite, which stirs up the dacite and quickly (within perhaps a few weeks) starts an eruption. The current episode of unrest has now lasted much longer than can be explained by this sort of idea, so the working hypothesis is that the molten rock that is currently intruding beneath Santorini is dacite, and not andesite.

*This research was funded by the UK Natural Environment Research Council through an urgency grant. The work was carried out by researchers in Oxford and Bristol who are supported by the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+), part of the NERC-funded National Centre for Earth Observation, Dynamic Earth and Geohazards Research Group, in collaboration with colleagues from the University of Athens and the National Technical University of Athens. Satellite data were provided by the German Space Agency (DLR) and the European Space Agency (ESA).

Additional support, in kind or through the loan of equipment, was provided by, among others, The Hellenic Military Geographical Service, Santorini Bellonio Library, the Nomikos Foundation, the Boatmen Union of Santorini and the NERC Geophysical Equipment Facility.

University of Oxford press office | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>