Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist Goes Underground for Real World Study

18.12.2009
To give his students the hands-on experience of studying water beneath the Earth's surface, Tufts University School of Arts and Sciences Professor Grant Garven took the ambitious step of having a system of underground boreholes installed on Tufts' Medford/Somerville campus.

It was not long before Garven's "outdoor laboratory" yielded an unexpected discovery. While drilling into an area on Tufts' campus known as "The Quad," Garven tapped an aquifer 50 feet below the surface.

In the specialized discipline of hydrogeology this was a noteworthy find, particularly since engineers had long ago ruled out the possibility of an underground water source. In 1861, the city of Charlestown, Mass., was so convinced of this that it built a reservoir on the site and filled it with water pumped from the Mystic Lakes as an emergency water supply.

Garven, who came to Tufts' geology department in 2007 after teaching for 25 years at Johns Hopkins University, says the aquifer is just the type of discovery that will enhance his students' understanding of hydrogeology – which is the study of how water moves underground through soil and bedrock.

Most of Garven's students are majoring in geology or civil and environmental engineering. Under his direction, the class of 27 budding hydrogeologists operates underground cameras, meters and other state-of-the-art equipment at the monitoring sites to map patterns of groundwater flow and record variations in temperature, chemical composition and pressure. The boreholes will be used for teaching purposes and not as a water source.

Monitoring wells are uncommon on university campuses in the Boston area. According to Garven, it is more conventional and easier to stick with textbooks or theoretical models. The advantage of having a borehole monitoring system on campus, he says, is that students can translate theory into real world practice. It's an approach he likens to teaching someone how to drive. "One can learn in theory how to drive a car by reading books and watching DVDs perhaps but the best way is to take driving lessons in a real car," he says.

Having a well system on campus also eliminates the need for Garven to take his class on field trips to Otis Air Force Base on Cape Cod, where the federal government maintains monitoring systems to evaluate groundwater conditions as part of a cleanup program there. Garven's classes have used the wells for their field trips. "It was very time consuming – just getting there and back required a whole day, and access is limited," he explains.

On Tufts' campus, Garven sited the boreholes at different elevations. His first monitoring well, and the one that tapped the aquifer, was drilled behind the Olin Center at the highest elevation on Tufts' campus. The other two wells were drilled at lower elevations – one near the Campus Center and a third site near the Powderhouse rotary at the campus periphery. Each borehole reaches about 120 to 200 feet into the Earth. The installations were made possible by startup funding from the geology department and the School of Arts and Sciences. Professor Garven also holds a secondary appointment in the Tufts School of Engineering.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>