Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist Goes Underground for Real World Study

18.12.2009
To give his students the hands-on experience of studying water beneath the Earth's surface, Tufts University School of Arts and Sciences Professor Grant Garven took the ambitious step of having a system of underground boreholes installed on Tufts' Medford/Somerville campus.

It was not long before Garven's "outdoor laboratory" yielded an unexpected discovery. While drilling into an area on Tufts' campus known as "The Quad," Garven tapped an aquifer 50 feet below the surface.

In the specialized discipline of hydrogeology this was a noteworthy find, particularly since engineers had long ago ruled out the possibility of an underground water source. In 1861, the city of Charlestown, Mass., was so convinced of this that it built a reservoir on the site and filled it with water pumped from the Mystic Lakes as an emergency water supply.

Garven, who came to Tufts' geology department in 2007 after teaching for 25 years at Johns Hopkins University, says the aquifer is just the type of discovery that will enhance his students' understanding of hydrogeology – which is the study of how water moves underground through soil and bedrock.

Most of Garven's students are majoring in geology or civil and environmental engineering. Under his direction, the class of 27 budding hydrogeologists operates underground cameras, meters and other state-of-the-art equipment at the monitoring sites to map patterns of groundwater flow and record variations in temperature, chemical composition and pressure. The boreholes will be used for teaching purposes and not as a water source.

Monitoring wells are uncommon on university campuses in the Boston area. According to Garven, it is more conventional and easier to stick with textbooks or theoretical models. The advantage of having a borehole monitoring system on campus, he says, is that students can translate theory into real world practice. It's an approach he likens to teaching someone how to drive. "One can learn in theory how to drive a car by reading books and watching DVDs perhaps but the best way is to take driving lessons in a real car," he says.

Having a well system on campus also eliminates the need for Garven to take his class on field trips to Otis Air Force Base on Cape Cod, where the federal government maintains monitoring systems to evaluate groundwater conditions as part of a cleanup program there. Garven's classes have used the wells for their field trips. "It was very time consuming – just getting there and back required a whole day, and access is limited," he explains.

On Tufts' campus, Garven sited the boreholes at different elevations. His first monitoring well, and the one that tapped the aquifer, was drilled behind the Olin Center at the highest elevation on Tufts' campus. The other two wells were drilled at lower elevations – one near the Campus Center and a third site near the Powderhouse rotary at the campus periphery. Each borehole reaches about 120 to 200 feet into the Earth. The installations were made possible by startup funding from the geology department and the School of Arts and Sciences. Professor Garven also holds a secondary appointment in the Tufts School of Engineering.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>