Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist Goes Underground for Real World Study

18.12.2009
To give his students the hands-on experience of studying water beneath the Earth's surface, Tufts University School of Arts and Sciences Professor Grant Garven took the ambitious step of having a system of underground boreholes installed on Tufts' Medford/Somerville campus.

It was not long before Garven's "outdoor laboratory" yielded an unexpected discovery. While drilling into an area on Tufts' campus known as "The Quad," Garven tapped an aquifer 50 feet below the surface.

In the specialized discipline of hydrogeology this was a noteworthy find, particularly since engineers had long ago ruled out the possibility of an underground water source. In 1861, the city of Charlestown, Mass., was so convinced of this that it built a reservoir on the site and filled it with water pumped from the Mystic Lakes as an emergency water supply.

Garven, who came to Tufts' geology department in 2007 after teaching for 25 years at Johns Hopkins University, says the aquifer is just the type of discovery that will enhance his students' understanding of hydrogeology – which is the study of how water moves underground through soil and bedrock.

Most of Garven's students are majoring in geology or civil and environmental engineering. Under his direction, the class of 27 budding hydrogeologists operates underground cameras, meters and other state-of-the-art equipment at the monitoring sites to map patterns of groundwater flow and record variations in temperature, chemical composition and pressure. The boreholes will be used for teaching purposes and not as a water source.

Monitoring wells are uncommon on university campuses in the Boston area. According to Garven, it is more conventional and easier to stick with textbooks or theoretical models. The advantage of having a borehole monitoring system on campus, he says, is that students can translate theory into real world practice. It's an approach he likens to teaching someone how to drive. "One can learn in theory how to drive a car by reading books and watching DVDs perhaps but the best way is to take driving lessons in a real car," he says.

Having a well system on campus also eliminates the need for Garven to take his class on field trips to Otis Air Force Base on Cape Cod, where the federal government maintains monitoring systems to evaluate groundwater conditions as part of a cleanup program there. Garven's classes have used the wells for their field trips. "It was very time consuming – just getting there and back required a whole day, and access is limited," he explains.

On Tufts' campus, Garven sited the boreholes at different elevations. His first monitoring well, and the one that tapped the aquifer, was drilled behind the Olin Center at the highest elevation on Tufts' campus. The other two wells were drilled at lower elevations – one near the Campus Center and a third site near the Powderhouse rotary at the campus periphery. Each borehole reaches about 120 to 200 feet into the Earth. The installations were made possible by startup funding from the geology department and the School of Arts and Sciences. Professor Garven also holds a secondary appointment in the Tufts School of Engineering.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>