Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist calls for advances in restoration sedimentology

07.11.2012
Rapid advances in the new and developing field of restoration sedimentology will be needed to protect the world's river deltas from an array of threats, Indiana University Bloomington geologist Douglas A. Edmonds writes in the journal Nature Geoscience.

The commentary, published this week in the November issue, addresses the fact that land is disappearing from river deltas at alarming rates. And deltas are extraordinarily important: They are ecologically rich and productive, and they are home to about 10 percent of the world's population.

"There's a lot of talk about ecological restoration of the coast," Edmonds said. "But with delta environments, before ecological restoration can happen you have to stabilize the coastline."

Under naturally occurring processes, coastal land is both created and destroyed at river deltas. River sediment is deposited at the delta, building land. Erosion takes some of the land away. The rate of land growth or loss depends on the balance between "sources" and "sinks," which is influenced by the complex interaction of floods, ocean waves and tides, vegetative decay and wind.

But sea-level rise and coastal subsidence have tilted the scales toward land loss, and dams and levees built for flood control have interfered with the delivery of sediment. In the Mississippi River delta, the chief focus of the article, an expanse of land the size of a football field disappears every hour.

Edmonds says there is potential for restoring deltas by designing river diversions that direct sediment from rivers to areas where it can do the most good.

"The main challenges for restoration sedimentology," he writes, "are understanding the sources and sinks, and predicting the rate of land growth under any given river diversion scenario."

For example, river sediment must be deposited near the shore, not carried into the deep ocean, to help create land. Hurricanes and waves carry away that sediment in some circumstances but in others they encourage deposition.

Because of dams and flood-control barriers, the Mississippi River doesn't appear to carry enough sediment to offset sea-level rise and coastal subsidence. "From today's perspective," Edmonds says, "the future of the Mississippi River delta is grim. But river diversions have proven successful, and there is a lot we don't know about the sedimentological processes of land-building that may change projections."

For instance, much remains to be learned about the interaction of forces that affect delta sedimentology. The "most significant unknown," he says, is the contribution of organic matter from decomposing plants to land building -- it is estimated to be as high as 34 percent in the Mississippi delta.

"The idea is to better understand the pathways by which sedimentology constructs delta land and the sinks by which that land is lost," Edmonds said. "It's all about that balance. And the more we know, the better we can engineer scenarios to tip the balance in favor of building land as opposed to drowning land."

Edmonds holds the Robert R. Schrock Professorship in Sedimentary Geology and is an assistant professor in the IU Bloomington Department of Geological Sciences in the College of Arts and Sciences. His research focuses on the sedimentology, stratigraphy and geomorphology of depositional systems, which he studies using mathematical modeling, field observation and occasionally experimentation.

The Nature Geoscience commentary is available online. To speak with Edmonds, contact Steve Hinnefeld at IU Communications, 812-856-3488 or slhinnef@iu.edu.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>