Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist calls for advances in restoration sedimentology

07.11.2012
Rapid advances in the new and developing field of restoration sedimentology will be needed to protect the world's river deltas from an array of threats, Indiana University Bloomington geologist Douglas A. Edmonds writes in the journal Nature Geoscience.

The commentary, published this week in the November issue, addresses the fact that land is disappearing from river deltas at alarming rates. And deltas are extraordinarily important: They are ecologically rich and productive, and they are home to about 10 percent of the world's population.

"There's a lot of talk about ecological restoration of the coast," Edmonds said. "But with delta environments, before ecological restoration can happen you have to stabilize the coastline."

Under naturally occurring processes, coastal land is both created and destroyed at river deltas. River sediment is deposited at the delta, building land. Erosion takes some of the land away. The rate of land growth or loss depends on the balance between "sources" and "sinks," which is influenced by the complex interaction of floods, ocean waves and tides, vegetative decay and wind.

But sea-level rise and coastal subsidence have tilted the scales toward land loss, and dams and levees built for flood control have interfered with the delivery of sediment. In the Mississippi River delta, the chief focus of the article, an expanse of land the size of a football field disappears every hour.

Edmonds says there is potential for restoring deltas by designing river diversions that direct sediment from rivers to areas where it can do the most good.

"The main challenges for restoration sedimentology," he writes, "are understanding the sources and sinks, and predicting the rate of land growth under any given river diversion scenario."

For example, river sediment must be deposited near the shore, not carried into the deep ocean, to help create land. Hurricanes and waves carry away that sediment in some circumstances but in others they encourage deposition.

Because of dams and flood-control barriers, the Mississippi River doesn't appear to carry enough sediment to offset sea-level rise and coastal subsidence. "From today's perspective," Edmonds says, "the future of the Mississippi River delta is grim. But river diversions have proven successful, and there is a lot we don't know about the sedimentological processes of land-building that may change projections."

For instance, much remains to be learned about the interaction of forces that affect delta sedimentology. The "most significant unknown," he says, is the contribution of organic matter from decomposing plants to land building -- it is estimated to be as high as 34 percent in the Mississippi delta.

"The idea is to better understand the pathways by which sedimentology constructs delta land and the sinks by which that land is lost," Edmonds said. "It's all about that balance. And the more we know, the better we can engineer scenarios to tip the balance in favor of building land as opposed to drowning land."

Edmonds holds the Robert R. Schrock Professorship in Sedimentary Geology and is an assistant professor in the IU Bloomington Department of Geological Sciences in the College of Arts and Sciences. His research focuses on the sedimentology, stratigraphy and geomorphology of depositional systems, which he studies using mathematical modeling, field observation and occasionally experimentation.

The Nature Geoscience commentary is available online. To speak with Edmonds, contact Steve Hinnefeld at IU Communications, 812-856-3488 or slhinnef@iu.edu.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>