Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food Chain May Be Altered Due to Fossil Fuel Remnants in Glaciers

23.02.2012
One of North America's largest icefields is the laboratory for a study revealing that the remnants of fossil fuels in glaciers may be changing the source of food for marine life down the food chain.

University of Alaska Southeast Associate Professor Eran Hood is the second author of the study, to be published in the international journal Nature Geoscience in March 2012 and published on-line this week. "When we look at the marine food webs today, we may be seeing a picture that is significantly different from what existed before the late-18th century," said first author Aron Stubbins of the Skidaway Institute of Oceanography.

Hood led the fieldwork on glaciers in Juneau, Alaska where visiting scholar-scientists from throughout the Lower 48 sampled snow, ice melt, and glacier runoff. The organic carbon from these water and snow samples was isolated and carbon dated. “We analyzed its molecular chemical structure,” said Hood. “The carbon fingerprint we found indicated aerosols derived from the combustion of fossil fuels are an important source of organic matter on glacier surfaces and also in glacier outflow streams.”

The scientists said glaciers like the Mendenhall offer ideal evidence of soot from carbon emissions. This "black carbon," darkens glacier surfaces and increases their absorption of light and heat. The carbon can also be exported to ecosystems downstream from glaciers where it can be metabolized and become part of the food web.

"These findings show that glaciers like Mendenhall can provide us with novel information about how humans are altering the composition of the atmosphere as a result of burning biomass and fossil fuels" said Hood. "The fact that we see this human-derived carbon signature in Alaskan glaciers also indicates that we still do not fully appreciate the post-industrial changes in the earth's surface biogeochemical cycles."

Glaciers and ice sheets together represent the second largest reservoir of water on the planet, and glacier ecosystems cover ten percent of the Earth, yet the carbon dynamics underpinning those ecosystems remain poorly understood. "Improving our understanding of glacier biogeochemistry is of great urgency, as glacier environments are among the most sensitive to climate change and the effects of industrial pollution,” emphasized Rob Spencer of the Woods Hole Research Center, another author on the study.

A warming climate will increase the outflow of the glaciers and the accompanying input of dissolved organic material into the coastal ocean. This will be most keenly felt in glacial coastal regions with the highest levels of ice loss including the Gulf of Alaska, Greenland and Patagonia.

The title of the study is “Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers.” In addition to Stubbins and Spencer, Hood’s fellow collaborators on the project were Andrew Vermilyea from the University of Alaska Southeast; Peter Raymond and David Butman from Yale University; George Aiken, Robert Striegl and Paul Schuster from the U.S. Geological Survey; Rachel Sleighter, Hussain Abdulla and Patrick Hatcher from Old Dominion University; Peter Hernes from the University of California-Davis; Durelle Scott from Virginia Polytechnic Institute and State University.

More information and a slideshow of photographs by Hood can be found in the U.S. National Science Foundation on-line article, “Scientists Unlock Record of Ecosystem Changes Frozen in World's Glaciers”: http://www.nsf.gov/news/news_summ.jsp?cntn_id=123154

Eran Hood
Associate Professor, Department Chair Environmental Science & Geography Program
University of Alaska Southeast
Juneau, Alaska
(907) 796-6244
ewhood@uas.alaska.edu

Eran Hood | Newswise Science News
Further information:
http://www.alaska.edu
http://www.nsf.gov/news/news_summ.jsp?cntn_id=123154

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>