Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Europe to suffer from more severe and persistent droughts

As Europe is battered by storms, new research reminds us of the other side of the coin.

By the end of this century, droughts in Europe are expected to be more frequent and intense due to climate change and increased water use. These results, by researchers from the European Commission’s Joint Research Centre (JRC) and the University of Kassel in Germany, are published today in Hydrology and Earth System Sciences, an open access journal of the European Geosciences Union (EGU).

Dry river bed in a peat upland in Northern England
Catherine Moody, distributed via

“Our research shows that many river basins, especially in southern parts of Europe, are likely to become more prone to periods of reduced water supply due to climate change,” says Giovanni Forzieri, a researcher in climate risk management at the JRC and lead author of the study. “An increasing demand for water, following a growing population and intensive use of water for irrigation and industry, will result in even stronger reductions in river flow levels.”

Drought is a major natural disaster that can have considerable impacts on society, the environment and the economy. In Europe alone, the cost of drought over the past three decades has amounted to over 100 billion euros. In this study, the researchers wanted to find out if and where in Europe increasing temperatures and intensive water consumption could make future droughts more severe and long-lasting.

To do this, they analysed climate and hydrological models under different scenarios. “Scenarios are narratives of possible evolutions – up to 2100 in this study – of our society that we use to quantify future greenhouse gas emissions and water consumption by different sectors,” explains Luc Feyen, a hydrologist at JRC and co-author of the paper. “Climate and water-use models then translate the greenhouse gas concentrations and water requirement into future climate and water consumption projections.”

The scientists then used these projected conditions to drive a hydrological model that mimics the distribution and flow of water on Earth. By running this model until 2100 for all river basins in Europe, they could evaluate how drought conditions may change in magnitude and severity over the 21st century.

The research shows that southern parts of Europe will be the most affected. Stream and river minimum flow levels may be lowered by up to 40% and periods of water deficiency may increase up to 80% due to climate change alone in the Iberian Peninsula, south of France, Italy and the Balkans.

Higher temperatures not only result in more water being evaporated from soils, trees and bodies of water, but will also lead to more frequent and prolonged dry spells, reducing water supply and worsening droughts. The emission scenario used in the study predicts that average global temperature will increase by up to 3.4°C by 2100, relative to the period 1961–1990. But the authors warn that the warming projected for Europe, particularly its southern regions, is even stronger. “Over the Iberian Peninsula, for example, summer mean temperature is projected to increase by up to 5°C by the end of this century,” says Feyen.

In addition to climate warming, intensive water use will further aggravate drought conditions by 10-30% in southern Europe, as well as in the west and centre of the continent, and in some parts of the UK.

“The results of this study emphasise the urgency of sustainable water resource management that is able to adapt to these potential changes in the hydrological system to minimise the negative socio-economic and environmental impacts,” Forzieri concludes.

Please mention the name of the publication (Hydrology and Earth System Sciences) if reporting on this story and, if reporting online, include a link to the paper or to the journal website (

*More information*
This research is presented in the paper ‘Ensemble projections of future streamflow droughts in Europe’ to appear in the EGU open access journal Hydrology and Earth System Sciences on 9 January 2014.

The scientific article is available online, free of charge, from the publication date onwards, at *To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at*

The discussion paper (before peer review) and reviewers comments is available at

The team is composed of Giovanni Forzieri (Institute for Environment and Sustainability, Directorate–General Joint Research Centre [JRC], European Commission, Ispra, Italy), Luc Feyen (JRC), Rodrigo Rojas (JRC), Martina Flörke (Center for Environmental Systems Research [CESR], University of Kassel, Germany), Florian Wimmer (CESR) and Alessandra Bianchi (JRC).

The European Geosciences Union ( is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check

If you wish to receive our press releases via email, please use the Press Release Subscription Form at Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

JRC Press office
Ispra, Italy
Tel.: +39-033278-9743
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Weitere Informationen:
(Hydrology and Earth System Sciences)

(Release on the EGU website)

Dr. Bárbara Ferreira | idw
Further information:

More articles from Earth Sciences:

nachricht Rapid plankton growth in ocean seen as sign of carbon dioxide loading
27.11.2015 | Johns Hopkins University

nachricht Revealing glacier flow with animated satellite images
26.11.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>