Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe to suffer from more severe and persistent droughts

09.01.2014
As Europe is battered by storms, new research reminds us of the other side of the coin.

By the end of this century, droughts in Europe are expected to be more frequent and intense due to climate change and increased water use. These results, by researchers from the European Commission’s Joint Research Centre (JRC) and the University of Kassel in Germany, are published today in Hydrology and Earth System Sciences, an open access journal of the European Geosciences Union (EGU).


Dry river bed in a peat upland in Northern England
Catherine Moody, distributed via imaggeo.egu.eu

“Our research shows that many river basins, especially in southern parts of Europe, are likely to become more prone to periods of reduced water supply due to climate change,” says Giovanni Forzieri, a researcher in climate risk management at the JRC and lead author of the study. “An increasing demand for water, following a growing population and intensive use of water for irrigation and industry, will result in even stronger reductions in river flow levels.”

Drought is a major natural disaster that can have considerable impacts on society, the environment and the economy. In Europe alone, the cost of drought over the past three decades has amounted to over 100 billion euros. In this study, the researchers wanted to find out if and where in Europe increasing temperatures and intensive water consumption could make future droughts more severe and long-lasting.

To do this, they analysed climate and hydrological models under different scenarios. “Scenarios are narratives of possible evolutions – up to 2100 in this study – of our society that we use to quantify future greenhouse gas emissions and water consumption by different sectors,” explains Luc Feyen, a hydrologist at JRC and co-author of the paper. “Climate and water-use models then translate the greenhouse gas concentrations and water requirement into future climate and water consumption projections.”

The scientists then used these projected conditions to drive a hydrological model that mimics the distribution and flow of water on Earth. By running this model until 2100 for all river basins in Europe, they could evaluate how drought conditions may change in magnitude and severity over the 21st century.

The research shows that southern parts of Europe will be the most affected. Stream and river minimum flow levels may be lowered by up to 40% and periods of water deficiency may increase up to 80% due to climate change alone in the Iberian Peninsula, south of France, Italy and the Balkans.

Higher temperatures not only result in more water being evaporated from soils, trees and bodies of water, but will also lead to more frequent and prolonged dry spells, reducing water supply and worsening droughts. The emission scenario used in the study predicts that average global temperature will increase by up to 3.4°C by 2100, relative to the period 1961–1990. But the authors warn that the warming projected for Europe, particularly its southern regions, is even stronger. “Over the Iberian Peninsula, for example, summer mean temperature is projected to increase by up to 5°C by the end of this century,” says Feyen.

In addition to climate warming, intensive water use will further aggravate drought conditions by 10-30% in southern Europe, as well as in the west and centre of the continent, and in some parts of the UK.

“The results of this study emphasise the urgency of sustainable water resource management that is able to adapt to these potential changes in the hydrological system to minimise the negative socio-economic and environmental impacts,” Forzieri concludes.

Please mention the name of the publication (Hydrology and Earth System Sciences) if reporting on this story and, if reporting online, include a link to the paper or to the journal website (http://www.hydrology-and-earth-system-sciences.net).

*More information*
This research is presented in the paper ‘Ensemble projections of future streamflow droughts in Europe’ to appear in the EGU open access journal Hydrology and Earth System Sciences on 9 January 2014.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.hydrol-earth-syst-sci.net/recent_papers.html. *To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at media@egu.eu.*

The discussion paper (before peer review) and reviewers comments is available at http://www.hydrol-earth-syst-sci-discuss.net/10/10719/2013/hessd-10-10719-2013.html

The team is composed of Giovanni Forzieri (Institute for Environment and Sustainability, Directorate–General Joint Research Centre [JRC], European Commission, Ispra, Italy), Luc Feyen (JRC), Rodrigo Rojas (JRC), Martina Flörke (Center for Environmental Systems Research [CESR], University of Kassel, Germany), Florian Wimmer (CESR) and Alessandra Bianchi (JRC).

The European Geosciences Union (www.egu.eu) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Contact*
JRC Press office
Ispra, Italy
Tel.: +39-033278-9743
Email: jrc-press@ec.europa.eu
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Weitere Informationen:
http://www.hydrology-and-earth-system-sciences.net
(Hydrology and Earth System Sciences)
http://www.egu.eu/news/97/europe-to-suffer-from-more-severe-and-persistent-droughts

(Release on the EGU website)

Dr. Bárbara Ferreira | idw
Further information:
http://www.egu.eu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>