Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is El Nino Taimasa?

20.02.2014
During very strong El Niño events, sea level drops abruptly in the tropical western Pacific and tides remain below normal for up to a year in the South Pacific, especially around Samoa.

The Samoans call the wet stench of coral die-offs arising from the low sea levels "taimasa" (pronounced [kai' ma'sa]). Studying the climate effects of this particular variation of El Niño and how it may change in the future is a team of scientists at the International Pacific Research Center, University of Hawai'i at Mānoa and at the University of New South Wales, Australia.


This shows flat-top Porites coral on a shallow reef near American Samoa. Coral heads are fully submerged under normal conditions. During El Niño Taimasa, tops of large flat coral on the reef are exposed to air at low tide.

Credit: Image courtesy of the National Park of American Samoa.

Two El Niño Taimasa events have occurred in recent history: 1982/83 and 1997/98. El Niño Taimasa differs from other strong El Niño events, such as those in 1986/87 and 2009/10, according to Matthew Widlansky, postdoctoral fellow at the International Pacific Research Center, who spearheaded the study.

"We noticed from tide gauge measurements that toward the end of these very strong El Niño events, when sea levels around Guam quickly returned to normal, that tide gauges near Samoa actually continued to drop," recalls Widlansky.

During such strong El Niño, moreover, the summer rain band over Samoa, called the South Pacific Convergence Zone, collapses toward the equator. These shifts in rainfall cause droughts south of Samoa and sometimes trigger more tropical cyclones to the east near Tahiti.

Using statistical procedures to tease apart the causes of the sea-level seesaw between the North and South Pacific, the scientists found that it is associated with the well-known southward shift of weak trade winds during the termination of El Niño, which in turn is associated with the development of the summer rain band.

Looking into the future with the help of computer climate models, the scientists are now studying how El Niño Taimasa will change with further warming of the planet. Their analyses show, moreover, that sea-level drops could be predictable seasons ahead, which may help island communities prepare for the next El Niño Taimasa.

At Ocean Sciences 2014

PROJECTIONS OF EXTREME SEA LEVEL VARIABILITY DUE TO EL NIÑO TAIMASA, Oral presentation Session #:079 Rising Sea Level: Contributions and Future Projections; Date: 2/26/2014; Time: 12:00; Location: 313 B; http://www.sgmeet.com/osm2014/viewabstract.asp?AbstractID=15569

Authors

Widlansky, M. J., University of Hawai'i at Manoa, USA, mwidlans@hawaii.edu

Timmermann, A., University of Hawai'i at Manoa, USA, axel@hawaii.edu

McGregor, S., University of New South Wales, Australia, shayne.mcgregor@unsw.edu.au

Stuecker, M. F., University of Hawai'i at Manoa, USA, stuecker@hawaii.edu

Chikamoto, Y., University of Hawai'i at Manoa, USA, chika44@hawaii.edu

Public Information Officer

Gisela Speidel, Outreach Specialist, International Pacific Research Center; gspeidel@hawaii.edu; tel. – (808) 956-9252

Publication Citation:

Widlansky, M.J., A. Timmermann, S. McGregor, M.F. Stuecker, and W. Cai, 2014: An interhemispheric tropical sea level seesaw due to El Niño Taimasa. J. Climate, 27 (3), 1070-1081, doi:10.1175/JCLI-D-13-00276.1.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

Further reports about: El Niño Mânoa Pacific coral Samoa Taimasa sea level tropical cyclone

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>