Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eggs Show Arctic Mercury Cycling May Be Linked to Ice Cover

24.01.2011
An international research team working with National Institute of Standards and Technology (NIST) scientists at the Hollings Marine Laboratory (HML) in Charleston, S.C., has suggested for the first time that mercury cycling in the flora and fauna of the Arctic may be linked to the amount of ice cover present.

Their study* is the latest work reported from the Seabird Tissue Archival and Monitoring Project (STAMP), a multiyear joint effort of NIST, the U.S. Fish and Wildlife Service (USFWS), the U.S. Geological Survey (USGS) and the Alaskan Bureau of Indian Affairs to track trends in pollutants in northern marine environments using seabird eggs.

Overall mercury levels in northern environments have been documented for some 20 years. However, the new study marks the first time that the tracking has been done using a sophisticated analysis of mercury isotopes (forms of the same atom that have different atomic masses) and an effect called "mass-independent fractionation" or MIF.

MIF is a relatively unusual change in the relative abundance of different isotopes of the same element (fractionation) that can be the result of photochemical reactions. Determining the relative amount of the MIF isotopes of mercury is considered valuable because the data can be used to trace the reactions in nature that led to the fractionation—and in turn, provide a better understanding of how the reactions work and how they impact the cycling of mercury in the environment.

Ultraviolet radiation from sunlight can fractionate mercury on the ocean surface via a process known as photodegradation. Laboratory research has shown that this reaction preferentially selects for some isotopes of mercury to move into the atmosphere while others become more abundant in the ocean. Plankton absorb the water-borne mercury, fish eat the plankton, and finally, sea birds eat the fish and pass the ingested mercury into their eggs. Therefore, the eggs are key tissues for mercury monitoring. For the current study, field groups made up of biologists and native Alaskans (for whom seabird eggs are a food source) collected eggs laid by murres, a bird species that nests year-round in three coastal regions of Alaska.

Examination of murre eggs from the northernmost nesting areas where sea ice exists all year long revealed lower amounts of MIF mercury isotopes than in eggs collected from sites in southern Alaska where there is no ice cover. Conversely, the mercury in eggs from nests near ice-free seas reflected significantly greater effects of mass-independent fractionation. The researchers believe that ice prevents UV light from reaching the mercury, effectively suppressing photodegradation.

With the potential for global warming to dramatically reduce Arctic sea ice in the future, the relationship between ice cover and distribution of mercury in the environment is obviously an important one to investigate further. The international research team next plans to use its seabird egg isotope monitoring system to distinguish the sources of mercury contamination in coastal areas to those from oceanic waters. For this study, eggs will be collected along Alaska's Norton Sound that receives runoff from the Yukon River—including high concentrations of cinnabar, the ore from which mercury is derived—and compared to eggs from remote island colonies that are more influenced by atmospheric and oceanic mercury sources.

Teaming on this study with NIST scientists at the HML were staff from the USFWS Alaska Maritime National Wildlife Refuge (Homer, Alaska), Environment Canada (Saskatoon, Saskatchewan, Canada), the Labotatoire des Mécanismes et Transferts en Géologie (Toulouse, France) and the Institut Pluridisciplinaire de Recherche sur ¾Environnement et les Matreriaux (Pau, France). Financial support for the research was provided by NIST, the French Centre National de la Recherche Scientifique and a grant from the French Agence Nationale de Recherche.

The HML is a unique partnership of governmental and academic agencies including NIST, NOAA's National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.

* D. Point, J.E. Sonke, R.D. Day, D.G. Roseneau, K.A. Hobson, S.S. Vander Pol, A.J. Moors, R.S. Pugh, O.F.X. Donard and P.R. Becker. Methylmercury photodegradation influenced by sea ice over in Arctic marine ecosystems. Nature Geoscience. Published online Jan. 16, 2011.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>