Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eggs Show Arctic Mercury Cycling May Be Linked to Ice Cover

24.01.2011
An international research team working with National Institute of Standards and Technology (NIST) scientists at the Hollings Marine Laboratory (HML) in Charleston, S.C., has suggested for the first time that mercury cycling in the flora and fauna of the Arctic may be linked to the amount of ice cover present.

Their study* is the latest work reported from the Seabird Tissue Archival and Monitoring Project (STAMP), a multiyear joint effort of NIST, the U.S. Fish and Wildlife Service (USFWS), the U.S. Geological Survey (USGS) and the Alaskan Bureau of Indian Affairs to track trends in pollutants in northern marine environments using seabird eggs.

Overall mercury levels in northern environments have been documented for some 20 years. However, the new study marks the first time that the tracking has been done using a sophisticated analysis of mercury isotopes (forms of the same atom that have different atomic masses) and an effect called "mass-independent fractionation" or MIF.

MIF is a relatively unusual change in the relative abundance of different isotopes of the same element (fractionation) that can be the result of photochemical reactions. Determining the relative amount of the MIF isotopes of mercury is considered valuable because the data can be used to trace the reactions in nature that led to the fractionation—and in turn, provide a better understanding of how the reactions work and how they impact the cycling of mercury in the environment.

Ultraviolet radiation from sunlight can fractionate mercury on the ocean surface via a process known as photodegradation. Laboratory research has shown that this reaction preferentially selects for some isotopes of mercury to move into the atmosphere while others become more abundant in the ocean. Plankton absorb the water-borne mercury, fish eat the plankton, and finally, sea birds eat the fish and pass the ingested mercury into their eggs. Therefore, the eggs are key tissues for mercury monitoring. For the current study, field groups made up of biologists and native Alaskans (for whom seabird eggs are a food source) collected eggs laid by murres, a bird species that nests year-round in three coastal regions of Alaska.

Examination of murre eggs from the northernmost nesting areas where sea ice exists all year long revealed lower amounts of MIF mercury isotopes than in eggs collected from sites in southern Alaska where there is no ice cover. Conversely, the mercury in eggs from nests near ice-free seas reflected significantly greater effects of mass-independent fractionation. The researchers believe that ice prevents UV light from reaching the mercury, effectively suppressing photodegradation.

With the potential for global warming to dramatically reduce Arctic sea ice in the future, the relationship between ice cover and distribution of mercury in the environment is obviously an important one to investigate further. The international research team next plans to use its seabird egg isotope monitoring system to distinguish the sources of mercury contamination in coastal areas to those from oceanic waters. For this study, eggs will be collected along Alaska's Norton Sound that receives runoff from the Yukon River—including high concentrations of cinnabar, the ore from which mercury is derived—and compared to eggs from remote island colonies that are more influenced by atmospheric and oceanic mercury sources.

Teaming on this study with NIST scientists at the HML were staff from the USFWS Alaska Maritime National Wildlife Refuge (Homer, Alaska), Environment Canada (Saskatoon, Saskatchewan, Canada), the Labotatoire des Mécanismes et Transferts en Géologie (Toulouse, France) and the Institut Pluridisciplinaire de Recherche sur ¾Environnement et les Matreriaux (Pau, France). Financial support for the research was provided by NIST, the French Centre National de la Recherche Scientifique and a grant from the French Agence Nationale de Recherche.

The HML is a unique partnership of governmental and academic agencies including NIST, NOAA's National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.

* D. Point, J.E. Sonke, R.D. Day, D.G. Roseneau, K.A. Hobson, S.S. Vander Pol, A.J. Moors, R.S. Pugh, O.F.X. Donard and P.R. Becker. Methylmercury photodegradation influenced by sea ice over in Arctic marine ecosystems. Nature Geoscience. Published online Jan. 16, 2011.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>