Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drilled Cores Yield Unique Arctic Climate Data

03.06.2009
An international research team returned recently from a drilling trip in Siberia, where they retrieved Arctic cores going back further than ever before collected, information they call “of absolutely unprecedented significance” for understanding past climate change and modeling future developments.

A team of scientists from the United States, Germany, Russia and Austria returned recently from a six-month sediment drilling expedition at a frozen lake in Siberia, where they retrieved cores going back further than ever before collected in the Arctic—information they call “of absolutely unprecedented significance.”

Data will help scientists to understand the region’s geologic climate record. Cores collected from three holes under Siberia’s Lake El’gygytgyn, “Lake E” for short, are more than 30 times longer (in time) than records from the Greenland Ice Sheet, according to geoscientist Julie Brigham-Grette of the University of Massachusetts Amherst, the lead U.S. scientist. The lake was formed 3.6 million years ago when a meteor more than a half-mile in diameter hit the Earth and gouged out the 11-mile wide crater.

Lake E’s cores represent the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The research team will compare this information with oceanic and land-based records from lower latitudes to better understand hemispheric global climate change and polar amplification.

In early June, the 3.5 tons of frozen sediment cores are being flown by special cargo plane from Siberia to St. Petersburg, then on to a lab at Germany’s University of Cologne for years of analysis by paleoclimatologists. Archive halves will arrive later at the University of Minnesota’s LacCore facility where they’ll be preserved in cold storage for future study.

Brigham-Grette says the team recovered a total of 1165 feet of sediment with replicate cores to roughly 2 million years ago with as high as 98 percent recovery. Studying high-latitude climate systems and how they react to changes in the global climate system is of great importance to climate research, she points out. Of prime interest is determining why and how the Arctic climate system evolved from a warm forested ecosystem into a cold permafrost ecosystem between 2 million and 3 million years ago.

“The continuous depositional record collected in this unique lake offers us a way to capture the dynamics and style of glacial/interglacial climate change when it was different in the past and why it was different,” Brigham-Grette explains. “Earth’s warm and cold cycles over the past 1 million years sometimes varied every 100,000 years but before that, climate change, especially in the high latitudes, varied over 41,000- and 23,000-year cycles, even before Northern Hemisphere glaciations got started 2.6 million years ago. The record from Lake E will show the ramp up to that type of change in the Earth’s climate.”

Below these sediments, cores drilled into bedrock at the site will offer geologists a rare opportunity to study impact melt rocks and target rocks from one of the best preserved large meteor impact craters on Earth, the only one formed in silicon-rich volcanic rock.

In addition, they collected sediment cores to the time of the meteor impact at 3.6 million years ago to 1033 feet below the lake floor. The lower material recovery there was due to “surprising sequences of coarse sand and gravel” interlaced with lake mud, Brigham-Grette notes. But these provide new revelations and suggest “unexpected glacial sources for these materials.” Overall, impact breccia cores will be sampled at a separate lab, the International Continental Drilling Program headquarters in Potsdam, Germany.

The team recovered roughly 131 feet of the earliest history of the lake in the warm middle Pliocene. This interval is fascinating, says Brigham-Grette, as a possible analog for future climate due to carbon dioxide forcing that can cause the greenhouse effect. However, initial results from the drilling are limited because sediment cores couldn’t be opened in the field at such a remote site.

The international Lake El’gygytgyn Drilling Project was funded by the International Continental Drilling Program (ICDP), the U.S. National Science Foundation’s Earth Sciences Division and Office of Polar Programs, the German Federal Ministry for Education and Research (BMBF), Alfred Wegener Institute (AWI), GeoForschungsZentrum-Potsdam (GFZ), the Russian Academy of Sciences Far East Branch (RAS/FEB), Russian Foundation for Basic Research (RFBR), and the Austrian Ministry for Science and Research.The leading Russian institutions include the Northeastern Interdisciplinary Scientific Research Institute (NEISRI), the Far East Geological Institute (FEGI), and Roshydromet’s Arctic and Antarctic Research Institute (AARI). The deep drilling system for Arctic operations was developed by DOSECC Inc. of Salt Lake City.

Findings from Lake E will become integrated into a network of sites collected by the geological community from the Arctic Ocean (ACEX) to Antarctica (especially ANDRILL).

Julie Brigham-Grette
413/545-4840
juliebg@geo.umass.edu

Julie Brigham-Grette | Newswise Science News
Further information:
http://www.umass.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>