Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drilled Cores Yield Unique Arctic Climate Data

03.06.2009
An international research team returned recently from a drilling trip in Siberia, where they retrieved Arctic cores going back further than ever before collected, information they call “of absolutely unprecedented significance” for understanding past climate change and modeling future developments.

A team of scientists from the United States, Germany, Russia and Austria returned recently from a six-month sediment drilling expedition at a frozen lake in Siberia, where they retrieved cores going back further than ever before collected in the Arctic—information they call “of absolutely unprecedented significance.”

Data will help scientists to understand the region’s geologic climate record. Cores collected from three holes under Siberia’s Lake El’gygytgyn, “Lake E” for short, are more than 30 times longer (in time) than records from the Greenland Ice Sheet, according to geoscientist Julie Brigham-Grette of the University of Massachusetts Amherst, the lead U.S. scientist. The lake was formed 3.6 million years ago when a meteor more than a half-mile in diameter hit the Earth and gouged out the 11-mile wide crater.

Lake E’s cores represent the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The research team will compare this information with oceanic and land-based records from lower latitudes to better understand hemispheric global climate change and polar amplification.

In early June, the 3.5 tons of frozen sediment cores are being flown by special cargo plane from Siberia to St. Petersburg, then on to a lab at Germany’s University of Cologne for years of analysis by paleoclimatologists. Archive halves will arrive later at the University of Minnesota’s LacCore facility where they’ll be preserved in cold storage for future study.

Brigham-Grette says the team recovered a total of 1165 feet of sediment with replicate cores to roughly 2 million years ago with as high as 98 percent recovery. Studying high-latitude climate systems and how they react to changes in the global climate system is of great importance to climate research, she points out. Of prime interest is determining why and how the Arctic climate system evolved from a warm forested ecosystem into a cold permafrost ecosystem between 2 million and 3 million years ago.

“The continuous depositional record collected in this unique lake offers us a way to capture the dynamics and style of glacial/interglacial climate change when it was different in the past and why it was different,” Brigham-Grette explains. “Earth’s warm and cold cycles over the past 1 million years sometimes varied every 100,000 years but before that, climate change, especially in the high latitudes, varied over 41,000- and 23,000-year cycles, even before Northern Hemisphere glaciations got started 2.6 million years ago. The record from Lake E will show the ramp up to that type of change in the Earth’s climate.”

Below these sediments, cores drilled into bedrock at the site will offer geologists a rare opportunity to study impact melt rocks and target rocks from one of the best preserved large meteor impact craters on Earth, the only one formed in silicon-rich volcanic rock.

In addition, they collected sediment cores to the time of the meteor impact at 3.6 million years ago to 1033 feet below the lake floor. The lower material recovery there was due to “surprising sequences of coarse sand and gravel” interlaced with lake mud, Brigham-Grette notes. But these provide new revelations and suggest “unexpected glacial sources for these materials.” Overall, impact breccia cores will be sampled at a separate lab, the International Continental Drilling Program headquarters in Potsdam, Germany.

The team recovered roughly 131 feet of the earliest history of the lake in the warm middle Pliocene. This interval is fascinating, says Brigham-Grette, as a possible analog for future climate due to carbon dioxide forcing that can cause the greenhouse effect. However, initial results from the drilling are limited because sediment cores couldn’t be opened in the field at such a remote site.

The international Lake El’gygytgyn Drilling Project was funded by the International Continental Drilling Program (ICDP), the U.S. National Science Foundation’s Earth Sciences Division and Office of Polar Programs, the German Federal Ministry for Education and Research (BMBF), Alfred Wegener Institute (AWI), GeoForschungsZentrum-Potsdam (GFZ), the Russian Academy of Sciences Far East Branch (RAS/FEB), Russian Foundation for Basic Research (RFBR), and the Austrian Ministry for Science and Research.The leading Russian institutions include the Northeastern Interdisciplinary Scientific Research Institute (NEISRI), the Far East Geological Institute (FEGI), and Roshydromet’s Arctic and Antarctic Research Institute (AARI). The deep drilling system for Arctic operations was developed by DOSECC Inc. of Salt Lake City.

Findings from Lake E will become integrated into a network of sites collected by the geological community from the Arctic Ocean (ACEX) to Antarctica (especially ANDRILL).

Julie Brigham-Grette
413/545-4840
juliebg@geo.umass.edu

Julie Brigham-Grette | Newswise Science News
Further information:
http://www.umass.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>