Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drilled Cores Yield Unique Arctic Climate Data

An international research team returned recently from a drilling trip in Siberia, where they retrieved Arctic cores going back further than ever before collected, information they call “of absolutely unprecedented significance” for understanding past climate change and modeling future developments.

A team of scientists from the United States, Germany, Russia and Austria returned recently from a six-month sediment drilling expedition at a frozen lake in Siberia, where they retrieved cores going back further than ever before collected in the Arctic—information they call “of absolutely unprecedented significance.”

Data will help scientists to understand the region’s geologic climate record. Cores collected from three holes under Siberia’s Lake El’gygytgyn, “Lake E” for short, are more than 30 times longer (in time) than records from the Greenland Ice Sheet, according to geoscientist Julie Brigham-Grette of the University of Massachusetts Amherst, the lead U.S. scientist. The lake was formed 3.6 million years ago when a meteor more than a half-mile in diameter hit the Earth and gouged out the 11-mile wide crater.

Lake E’s cores represent the longest time-continuous sediment record of past climate change in the terrestrial Arctic. The research team will compare this information with oceanic and land-based records from lower latitudes to better understand hemispheric global climate change and polar amplification.

In early June, the 3.5 tons of frozen sediment cores are being flown by special cargo plane from Siberia to St. Petersburg, then on to a lab at Germany’s University of Cologne for years of analysis by paleoclimatologists. Archive halves will arrive later at the University of Minnesota’s LacCore facility where they’ll be preserved in cold storage for future study.

Brigham-Grette says the team recovered a total of 1165 feet of sediment with replicate cores to roughly 2 million years ago with as high as 98 percent recovery. Studying high-latitude climate systems and how they react to changes in the global climate system is of great importance to climate research, she points out. Of prime interest is determining why and how the Arctic climate system evolved from a warm forested ecosystem into a cold permafrost ecosystem between 2 million and 3 million years ago.

“The continuous depositional record collected in this unique lake offers us a way to capture the dynamics and style of glacial/interglacial climate change when it was different in the past and why it was different,” Brigham-Grette explains. “Earth’s warm and cold cycles over the past 1 million years sometimes varied every 100,000 years but before that, climate change, especially in the high latitudes, varied over 41,000- and 23,000-year cycles, even before Northern Hemisphere glaciations got started 2.6 million years ago. The record from Lake E will show the ramp up to that type of change in the Earth’s climate.”

Below these sediments, cores drilled into bedrock at the site will offer geologists a rare opportunity to study impact melt rocks and target rocks from one of the best preserved large meteor impact craters on Earth, the only one formed in silicon-rich volcanic rock.

In addition, they collected sediment cores to the time of the meteor impact at 3.6 million years ago to 1033 feet below the lake floor. The lower material recovery there was due to “surprising sequences of coarse sand and gravel” interlaced with lake mud, Brigham-Grette notes. But these provide new revelations and suggest “unexpected glacial sources for these materials.” Overall, impact breccia cores will be sampled at a separate lab, the International Continental Drilling Program headquarters in Potsdam, Germany.

The team recovered roughly 131 feet of the earliest history of the lake in the warm middle Pliocene. This interval is fascinating, says Brigham-Grette, as a possible analog for future climate due to carbon dioxide forcing that can cause the greenhouse effect. However, initial results from the drilling are limited because sediment cores couldn’t be opened in the field at such a remote site.

The international Lake El’gygytgyn Drilling Project was funded by the International Continental Drilling Program (ICDP), the U.S. National Science Foundation’s Earth Sciences Division and Office of Polar Programs, the German Federal Ministry for Education and Research (BMBF), Alfred Wegener Institute (AWI), GeoForschungsZentrum-Potsdam (GFZ), the Russian Academy of Sciences Far East Branch (RAS/FEB), Russian Foundation for Basic Research (RFBR), and the Austrian Ministry for Science and Research.The leading Russian institutions include the Northeastern Interdisciplinary Scientific Research Institute (NEISRI), the Far East Geological Institute (FEGI), and Roshydromet’s Arctic and Antarctic Research Institute (AARI). The deep drilling system for Arctic operations was developed by DOSECC Inc. of Salt Lake City.

Findings from Lake E will become integrated into a network of sites collected by the geological community from the Arctic Ocean (ACEX) to Antarctica (especially ANDRILL).

Julie Brigham-Grette

Julie Brigham-Grette | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>