Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep recycling in the Earth faster than thought

11.08.2011
Sunken ocean crust resurfaces from Earth’s mantle after only 500 million years.

The recycling of the Earth´s crust in volcanoes happens much faster than scientists have previously assumed. Rock of the ocean crust, which sinks deep into the earth due to the movement of tectonic plates, reemerges through volcanic eruptions after around 500 million years. Researchers from the Max Planck Institute for Chemistry in Mainz obtained this result using volcanic rock samples. Previously, geologists thought this process would take about two billion years.


Olivine crystals from Mauna Loa volcano, Hawaii. The brown ovals are solidified, glassy inclusions trapped as droplets of melt by the growing olivine crystal. They contain strontium isotope ratios which are inherited from 500 million year old seawater. The black dots are gas inclusions.
Image: Sobolev, Max Planck Institute for Chemistry.

Virtually all of the ocean islands are volcanoes. Several of them, such as Hawaii, originate from the lowest part of the mantle. This geological process is similar to the movement of colored liquids in a lava lamp: hot rock rises in cylindrical columns, the so-called mantle plumes, from a depth of nearly 3000 kilometers. Near the surface, it melts, because the pressure is reduced, and forms volcanoes. The plume originates from former ocean crust which early in the Earth´s history sank to the bottom of the mantle. Previously, scientists had assumed that this recycling took about two billion years.

The chemical analysis of tiny glassy inclusions in olivine crystals from basaltic lava on Mauna Loa volcano in Hawaii has now surprised geologists: the entire recycling process requires at most half a billion years, four times faster than previously thought.

The microscopically small inclusions in the volcanic rock contain trace elements originally dissolved in seawater, and this allows the recycling process to be dated. Before the old ocean crust sinks into the mantle, it soaks up seawater, which leaves tell-tale trace elements in the rock. The age is revealed by the isotopic ratio of strontium which changes with time. Strontium is a chemical element, which occurs in trace amounts in sea water. The isotopes of chemical elements have the same number of protons but different numbers of neutrons. Mainz scientists developed a special laser mass spectrometry method which allowed the detection of isotopes of strontium in extremely small quantities.

To their surprise, the Max Planck researchers found residues of sea water with an unexpected strontium isotope ratio in the samples, which suggested an age of less than 500 million years for the inclusions. Therefore the rock material forming the Hawaiian basalts must be younger as previously thought.

"Apparently strontium from sea water has reached deep in the Earth´s mantle, and reemerged after only half a billion years, in Hawaiian volcano lavas," says Klaus Jochum, co-author of the publication. "This discovery was a huge surprise for us."

Another surprise for the scientists was the tremendous variation of strontium isotope ratios found in the melt inclusions in olivine from the single lava sample. “This variation is much larger than the known range for all Hawaiian lavas”, says Alexander Sobolev. “This finding suggests that the mantle is far more chemically heterogeneous on a small spatial scale than we thought before.” This heterogeneity is preserved only by melt inclusions but is completely obliterated in the lavas because of their complete mixing.

Sobolev, Jochum and their colleagues expect to obtain similar results for other volcanoes and therefore be able to determine the recycling age of the ocean crust more precisely.

The Max Planck Institute for Chemistry
Around 260 people work at the Max Planck Institute for Chemistry, researching the earth and its environment at various levels from nanoparticles to planets and from ecosystem dynamics to global climate change. There are three departments studying the earth system in field studies, under lab conditions and with the aid of computer-assisted modeling. The institute is helping develop our understanding of the earth's natural resources and providing the solutions for sustainable use of our planet and environmental protection. The institute's International Research School and E-learning program are an active contribution to scientific education. The Max Planck Institute for Chemistry is actively involved in the event program of the City of Science in Mainz in 2011. Next year the Institute celebrates its´ 100th anniversary.

More Information: http://www.mpic.de

Publication:
Alexander V. Sobolev, Albrecht W. Hofmann, Klaus Peter Jochum, Dmitry V. Kuzmin & Brigitte Stoll
A young source for the Hawaiian plume
Nature, 10 August, 2011
Contact:
Prof. Dr. Alexander Sobolev
Max Planck Institute for Chemistry, Mainz
Phone: +49 6131-305 609
E-mail: alexander.sobolev@mpic.de
Dr. Klaus Jochum
Max Planck Institute for Chemistry, Mainz
Phone: +49 6131-305 216
E-mail: k.jochum@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>