Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dead Forests Release Less Carbon Into Atmosphere Than Expected

Billions of trees killed in the wake of mountain pine beetle infestations, ranging from Mexico to Alaska, have not resulted in a large spike in carbon dioxide released into the atmosphere, contrary to predictions, a UA-led study has found.
Massive tree die-offs release less carbon into the atmosphere than previously thought, new research led by the University of Arizona suggests.

Across the world, trees are dying in increasing numbers, most likely in the wake of a climate changing toward drier and warmer conditions, scientists suspect. In western North America, outbreaks of mountain pine beetles (Dendroctonus ponderosae) have killed billions of trees from Mexico to Alaska over the last decade.

Given that large forested areas play crucial roles in taking carbon dioxide out of the atmosphere through photosynthesis and turning it into biomass, an important question is what happens to that stored carbon when large numbers of trees die.

"The general expectation we had was that when trees die on a large scale, it would lead to a big pulse of carbon into the atmosphere through microorganisms metabolizing all that dead wood," said David Moore, an assistant professor in the School of Natural Resources and the Environment in the UA College of Agriculture and Life Sciences and one of the lead authors of the study, which is published online in the journal Ecology Letters.

"A question we are looking to answer is, 'How does the carbon dioxide released from the forest into the atmosphere change as you have large scale tree mortality over time?''' said second lead author Nicole Trahan, a postdoctoral researcher at the University of Colorado, Boulder.

According to co-author Russell Monson, who is the Louise Foucar Marshall Professor in the UA School of Natural Resources and the Environment, forests affect the carbon budget of the atmosphere through two dominant processes: photosynthesis, by which plants take carbon dioxide out of the atmosphere and lock it up in organic compounds, and respiration, by which plants and soil microbes release carbon dioxide back into the atmosphere. The balance of these processes determines whether a particular forest is a carbon source or a carbon sink.

After a massive tree die-off, conventional wisdom has it that a forest would go from carbon sink to carbon source: Since the soil microbes are still around, they are expected to release large amounts of the greenhouse gas carbon dioxide into the atmosphere, where it is thought to accelerate climate change.

"Surprisingly, we couldn't find a big pulse," said Moore, who is also a member of the UA Institute of the Environment.

Trahan added: "In the first few years after beetles have come in and killed trees, the carbon release from the surrounding soil actually goes down."

Large amounts of dead trees, it turns out, hold on to their carbon for a long time and prevent it from quickly being released into the soil or the atmosphere. According to Moore, this might be due to several reasons: First, while trees take up carbon dioxide during the day during photosynthesis, they release some of it at night when they switch to respiration.

"Once the trees are dead, respiration by the trees goes away," Moore said. "In addition, if you cut off the carbon that a tree put into the soil while it was alive, you reduce the ability of the soil microbes around the roots to respire."

"After five or six years, there is a buildup of some dead plant material, leaf litter and so on, and that seems to drive the rate of respiration up again. But it never recovers to the point it was before the beetles killed the trees, at least over the span of a decade," Moore said.

Finally, the trees studied in this project grow at higher elevations, where cooler temperatures slow the decomposition process and thereby carbon-releasing respiration.

"Overall, we discovered that after a tree die-off, the loss of carbon in the soil results less from increased respiration by microbes but more from the fact that trees are no longer sequestering photosynthesized carbon into the soil," Moore said. "There seems to be a dampening of the carbon cycle rather than a big pulse of carbon release. So even if the forest now goes from a sink to a source of carbon dioxide, it's not as dramatic of an effect as we thought it would be."

The large areas of high-elevation forests are some of the most important carbon sinks for Western North America, Moore said. Worldwide, plants take about 120 billion tons of carbon out of the atmosphere each year. About half of that is released again through plant respiration, while the other half is released through respiration by animals, microbes and other organisms.

According to data published by the Intergovernmental Panel of Climate Change, or IPCC, burning of fossil fuels and land use change result in an annual net addition of about 8 billion tons of carbon to the atmosphere.

"The reason we study the natural carbon cycle is because any change, even a small one, could have a large effect on our climate," Moore said.

Outbreaks of mountain pine beetles are nothing new, Moore said.

"The beetles are a natural phenomenon, they have been there for very long time. Their populations go through periods of boom and bust. But extended drought hinders the trees ability to withstand the attacks."

In the past, cold temperatures used to kill beetles off in the wintertime, but with temperatures on the rise, this happens less and less. Add to that a climatic trend to more and longer droughts, and you have a double whammy, Moore explained.

"Over the past two decades, it has not been very cold in the wintertime and we have experienced a succession of very dry years across the Southwest, rendering the trees more susceptible to beetles."

For the study, the team set up experiments and collected data in two areas: Fraser Experimental Forest in Colorado's Arapaho National Forest in Colorado, and Niwot Ridge, a study site near Nederland, Colo.

"We measure the carbon dioxide coming out of the soil," Moore explained. "At the Fraser site, we used a method to measure the CO2 as it increased during the day and decreased overnight at the bottom of the valley. We used that as a measure of how much carbon dioxide was cycled across the entire valley."

Using a flux tower at Niwot Ridge, the team was able to measure the net uptake of carbon in the area. A flux tower monitors eddies, or pockets of air, with instruments that measure the levels of carbon dioxide and water, allowing researchers to estimate how much carbon the ecosystem is pulling in from the atmosphere versus how much water and carbon it is losing.

To put the data into a broader context, Moore and his colleagues compared the fluxes measured at Niwot Ridge to measurements obtained by NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra and Aqua Satellites. NASA provides a global dataset by measuring the amount of green vegetation and the temperatures on the Earth's surface.

"Those datasets are very good on a global level but less so for a given local area," Moore said. "Therefore, we used flux tower data to validate the NASA product for our region."

At Fraser Experimental Forest and the Niwot Ridge sites, the team took advantage of a sequence of trees in which time of death had been documented.

"This gives us a timeline of almost a decade where we know what happened to those trees," Trahan said. "We know when they died, and we can follow what happens to the carbon in the system."

"As long as a tree is alive, it puts much of the carbon it fixes from the atmosphere underground to support its roots and associated microorganisms," Trahan explained. "When the tree dies, that carbon flow is shut off, and the release of carbon into the soil and the atmosphere goes down, leading to the observed dampening effect on the carbon cycle: As trees die, less carbon is taken up from the atmosphere, but less is released from the soil as well."

The data obtained in studies like this one can be used to inform models that help scientists predict how ecosystems will respond to these disturbances in the future.

Daniel Stolte | University of Arizona
Further information:

More articles from Earth Sciences:

nachricht Mat baits, hooks and destroys pollutants in water
22.03.2018 | Rice University

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
22.03.2018 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>