Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSI-style investigation of meteorite hits on Earth

19.10.2011
Geologists assess deep impacts of near-Earth object strikes

Volcanologists from the Universities of Leicester and Durham have forensically reconstructed the impact of a meteorite on Earth and how debris was hurled from the crater to devastate the surrounding region.

New research by Mike Branney, of the University of Leicester's Department of Geology, and Richard Brown, University of Durham, shows that some aspects of giant meteorite impacts onto Earth may mimic the behaviour of large volcanic eruptions.

Meteorite impacts are more common than is popularly appreciated – but what happens when the meteorite hits? Direct observation is understandably difficult, but researchers pick through impact debris that has been spared the ravages of erosion, to forensically reconstruct the catastrophic events.

Mike Branney and Richard Brown analysed an ejecta layer derived from the impact of a huge meteorite and discovered that much of the ejected debris moved across the ground as rapid, dense, ground-hugging currents of gas and debris, remarkably similar to the awesome pyroclastic density currents that flow radially outwards from explosive volcanoes.

Dr Branney said: "In particular, the way that ash and dust stick together seems identical. Moist ash from explosive volcanoes sticks together in the atmosphere to fall out as mm-sized pellets. Where these drop back into a hot pyroclastic density current, they grow into larger layered structures, known as accretionary lapilli."

The researchers studied a finely preserved deposit in northwest Scotland from a huge impact that occurred a billion years ago. It shows both types of these 'volcanic' particles - pellets and lapilli - are produced.

Dr Brown added: "This reveals that that the 10 meter-thick layer, which has been traced for over 50 km along the Scottish coast, was almost entirely emplaced as a devastating density current that sped outwards from the point of impact - just like a density current from a volcano. Only the uppermost few centimetres actually fell out through the atmosphere. "

The Leicester and Durham scientists say that an improved understanding of what happens when large objects hits the Earth will help us understand how these catastrophic events may have affected life on the planet in the past ...and possibly in the future.

Note to editors

Publication: Branney, M.J. & Brown, R.J. 2011. Impactoclastic density current emplacement of terrestrial meteorite-impact ejecta and the formation of dust pellets and accretionary lapilli: evidence from Stac Fada, Scotland. Journal of Geology 119, 275-292.

Contact: Dr. Mike Branney, Department of Geology, University of Leicester. E-mail mjb26@le.ac.uk

Dr. Mike Branney | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>