Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate studies to benefit from 12 years of satellite aerosol data

11.11.2009
Aerosols, very small particles suspended in the air, play an important role in the global climate balance and in regulating climate change. They are one of the greatest sources of uncertainty in climate change models. ESA's GlobAerosol project has been making the most of European satellite capabilities to monitor them.

Using data from the Along Track Scanning Radiometer-2 on the ERS-2 satellite, the Advanced Along Track Scanning Radiometer and the Medium Resolution Imaging Spectrometer on Envisat and the Spinning Enhanced Visible & InfraRed Imager (SEVIRI) instrument on the Meteosat Second Generation, GlobAerosol has produced a global aerosol dataset going back to 1995. The full dataset is available on the GlobAerosol website.

Some aerosols occur naturally, originating from sea-spray, wind-blown dust, volcanic eruptions and biochemical emissions from oceans and forests, while others are produced through emissions from industrial pollution, fossil-fuel burning, man-made forest fires and agriculture.

They are important because they strongly affect Earth’s energy balance in two ways: they scatter and absorb sunlight and infrared emission from Earth's surface, and act as condensation nuclei for the formation of cloud droplets. According to the Intergovernmental Panel on Climate Change, these effects tend to cool the planet to almost the same degree as carbon dioxide emissions warm it. These estimates are uncertain, however, so more data are needed.

Satellite data can provide essential information on the global distribution of aerosols to help understand the impact of these processes for the purposes of predicting weather and climate as well as for monitoring the transport of industrial pollution.

To investigate the usefulness of the dataset, pilot studies were carried out by six atmospheric modelling groups from the European Centre for Medium-Range Weather Forecasts, the Laboratoire des Sciences du Climat et l'Environnement, the University of Leeds, the University of Edinburgh, the Max Planck Institute for Meteorology, and the Netherlands Organisation for Applied Scientific Research (TNO). Comparing the satellite data with the model predictions showed differences that helped to highlight deficiencies in both.

Results of the pilot studies were presented during ESA’s Atmospheric Science Conference held in Barcelona, Spain, in September. Maria Grazia Frontoso, working on the development of the GLOMAP aerosol model at the University of Leeds in the UK said: "GlobAerosol seems to be a very useful tool to address uncertainties in global models."

Arjo Segers from TNO in the Netherlands compared GlobAerosol data with model predictions of desert dust and forest fires over the Iberian peninsular. "The results of this study suggest that the GlobAerosol SEVIRI dataset is especially useful for investigating aerosol levels over water."

Still, more work is needed to address the problems highlighted in the intercomparison study of the models, and to improve the overall accuracy of the satellite aerosol data. The valuable feedback obtained from the users will help to lay the foundation for the development of more accurate satellite-based aerosol measurements as part of ESA’s new Climate Change Initiative.

The GlobAerosol project was carried out by GMV (Spain), the University of Oxford (UK), Rutherford Appleton Laboratory (UK) and Laboratoire Optique Atmospherique (France) and funded by the Data User Element under ESA’s Earth Observation Envelope Programme.

Mariangela D'Acunto | EurekAlert!
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>