Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon cycle before humans

17.02.2010
Two studies provide clearer picture of how carbon cycle was dramatically affected long ago

Geoengineering -- deliberate manipulation of the Earth's climate to slow or reverse global warming -- has gained a foothold in the climate change discussion. But before effective action can be taken, the Earth's natural biogeochemical cycles must be better understood.

Two Northwestern University studies, both published online recently by Nature Geoscience, contribute new -- and related -- clues as to what drove large-scale changes to the carbon cycle nearly 100 million years ago. Both research teams conclude that a massive amount of volcanic activity introduced carbon dioxide and sulfur into the atmosphere, which in turn had a significant impact on the carbon cycle, oxygen levels in the oceans and marine plants and animals.

Both teams studied organic carbon-rich sediments from the Western Interior Seaway, an ancient seabed stretching from the Gulf of Mexico to the Arctic Ocean, to learn more about a devastating event 94.5 million years ago when oxygen levels in the oceans dropped so low that one-third of marine life died.

The authors of the first paper, titled "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2," reveal that before oxygen levels dropped so precipitously there was a massive increase in oceanic sulfate levels. Their conclusion is based on analyses of the stable isotopes of sulfur in sedimentary minerals from the central basin of the Western Interior Seaway, located in Colorado.

The researchers theorize that a massive amount of volcanic activity caused this sulfate spike, which triggered a cascade of biogeochemical events. More sulfate led to an abundance of the nutrient phosphorous, which allowed phytoplankton populations in the oceans to multiply. The phytoplankton thrived and then died. Their decomposing bodies depleted oxygen levels in the oceans, leading to the widespread death of marine animals.

The sedimentary burial of marine organic carbon during this event was so large, some prior studies hypothesized that it caused a decrease in atmospheric carbon dioxide levels. In the second Nature Geoscience paper, titled "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2," the researchers tested the carbon dioxide drawdown prediction. By studying fossil plant cuticle material, they determined the amount of carbon dioxide in the atmosphere at the time the plants were growing. (The cuticle samples were collected from sites representing the western shore of the Western Interior Seaway, in present-day southwestern Utah.)

This work found that before the onset of ocean anoxia, the level of carbon dioxide in the atmosphere increased by approximately 20 percent. This significant increase is consistent with the volcanic activity invoked by the first Northwestern study (described above). The paleo-carbon dioxide reconstruction also detected two episodes of marked decrease in carbon dioxide levels -- up to 200 parts per million -- at the time of the early phase of marine carbon burial. This observation provides strong support for the carbon dioxide drawdown hypothesis.

"Our research highlights the previously unappreciated role that the sulfur cycle plays in regulating nutrient cycling, the carbon cycle and climate," said Matthew Hurtgen, assistant professor of Earth and planetary sciences in the Weinberg College of Arts and Sciences at Northwestern and lead researcher of the first study.

"These two complementary studies provide a much clearer picture of how the Earth's carbon cycle was dramatically affected by catastrophic natural events long ago," said Bradley Sageman, professor and chair of Earth and planetary sciences at Northwestern and a co-author of both papers. "Although these events played out over hundreds or thousands of years, the magnitude of the changes, in carbon dioxide levels for example, are similar to those of the last 150 years resulting from human influence on the carbon cycle. The evidence demonstrates that the modern carbon cycle has been accelerated by orders of magnitude."

The sulfur work reported in the paper "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2" was conducted by Derek D. Adams, a doctoral candidate in Hurtgen's research group. Adams is first author of the paper; Hurtgen and Sageman are the paper's other authors.

Richard S. Barclay, a doctoral candidate in Sageman's research group, is the first author of the "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2" paper. Sageman also is an author, and the third author is Jennifer McElwain, a professor from University College Dublin who co-advises Barclay's research and is one of the originators of the cuticle analysis method.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>