Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon cycle before humans

17.02.2010
Two studies provide clearer picture of how carbon cycle was dramatically affected long ago

Geoengineering -- deliberate manipulation of the Earth's climate to slow or reverse global warming -- has gained a foothold in the climate change discussion. But before effective action can be taken, the Earth's natural biogeochemical cycles must be better understood.

Two Northwestern University studies, both published online recently by Nature Geoscience, contribute new -- and related -- clues as to what drove large-scale changes to the carbon cycle nearly 100 million years ago. Both research teams conclude that a massive amount of volcanic activity introduced carbon dioxide and sulfur into the atmosphere, which in turn had a significant impact on the carbon cycle, oxygen levels in the oceans and marine plants and animals.

Both teams studied organic carbon-rich sediments from the Western Interior Seaway, an ancient seabed stretching from the Gulf of Mexico to the Arctic Ocean, to learn more about a devastating event 94.5 million years ago when oxygen levels in the oceans dropped so low that one-third of marine life died.

The authors of the first paper, titled "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2," reveal that before oxygen levels dropped so precipitously there was a massive increase in oceanic sulfate levels. Their conclusion is based on analyses of the stable isotopes of sulfur in sedimentary minerals from the central basin of the Western Interior Seaway, located in Colorado.

The researchers theorize that a massive amount of volcanic activity caused this sulfate spike, which triggered a cascade of biogeochemical events. More sulfate led to an abundance of the nutrient phosphorous, which allowed phytoplankton populations in the oceans to multiply. The phytoplankton thrived and then died. Their decomposing bodies depleted oxygen levels in the oceans, leading to the widespread death of marine animals.

The sedimentary burial of marine organic carbon during this event was so large, some prior studies hypothesized that it caused a decrease in atmospheric carbon dioxide levels. In the second Nature Geoscience paper, titled "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2," the researchers tested the carbon dioxide drawdown prediction. By studying fossil plant cuticle material, they determined the amount of carbon dioxide in the atmosphere at the time the plants were growing. (The cuticle samples were collected from sites representing the western shore of the Western Interior Seaway, in present-day southwestern Utah.)

This work found that before the onset of ocean anoxia, the level of carbon dioxide in the atmosphere increased by approximately 20 percent. This significant increase is consistent with the volcanic activity invoked by the first Northwestern study (described above). The paleo-carbon dioxide reconstruction also detected two episodes of marked decrease in carbon dioxide levels -- up to 200 parts per million -- at the time of the early phase of marine carbon burial. This observation provides strong support for the carbon dioxide drawdown hypothesis.

"Our research highlights the previously unappreciated role that the sulfur cycle plays in regulating nutrient cycling, the carbon cycle and climate," said Matthew Hurtgen, assistant professor of Earth and planetary sciences in the Weinberg College of Arts and Sciences at Northwestern and lead researcher of the first study.

"These two complementary studies provide a much clearer picture of how the Earth's carbon cycle was dramatically affected by catastrophic natural events long ago," said Bradley Sageman, professor and chair of Earth and planetary sciences at Northwestern and a co-author of both papers. "Although these events played out over hundreds or thousands of years, the magnitude of the changes, in carbon dioxide levels for example, are similar to those of the last 150 years resulting from human influence on the carbon cycle. The evidence demonstrates that the modern carbon cycle has been accelerated by orders of magnitude."

The sulfur work reported in the paper "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2" was conducted by Derek D. Adams, a doctoral candidate in Hurtgen's research group. Adams is first author of the paper; Hurtgen and Sageman are the paper's other authors.

Richard S. Barclay, a doctoral candidate in Sageman's research group, is the first author of the "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2" paper. Sageman also is an author, and the third author is Jennifer McElwain, a professor from University College Dublin who co-advises Barclay's research and is one of the originators of the cuticle analysis method.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>