Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon cycle before humans

17.02.2010
Two studies provide clearer picture of how carbon cycle was dramatically affected long ago

Geoengineering -- deliberate manipulation of the Earth's climate to slow or reverse global warming -- has gained a foothold in the climate change discussion. But before effective action can be taken, the Earth's natural biogeochemical cycles must be better understood.

Two Northwestern University studies, both published online recently by Nature Geoscience, contribute new -- and related -- clues as to what drove large-scale changes to the carbon cycle nearly 100 million years ago. Both research teams conclude that a massive amount of volcanic activity introduced carbon dioxide and sulfur into the atmosphere, which in turn had a significant impact on the carbon cycle, oxygen levels in the oceans and marine plants and animals.

Both teams studied organic carbon-rich sediments from the Western Interior Seaway, an ancient seabed stretching from the Gulf of Mexico to the Arctic Ocean, to learn more about a devastating event 94.5 million years ago when oxygen levels in the oceans dropped so low that one-third of marine life died.

The authors of the first paper, titled "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2," reveal that before oxygen levels dropped so precipitously there was a massive increase in oceanic sulfate levels. Their conclusion is based on analyses of the stable isotopes of sulfur in sedimentary minerals from the central basin of the Western Interior Seaway, located in Colorado.

The researchers theorize that a massive amount of volcanic activity caused this sulfate spike, which triggered a cascade of biogeochemical events. More sulfate led to an abundance of the nutrient phosphorous, which allowed phytoplankton populations in the oceans to multiply. The phytoplankton thrived and then died. Their decomposing bodies depleted oxygen levels in the oceans, leading to the widespread death of marine animals.

The sedimentary burial of marine organic carbon during this event was so large, some prior studies hypothesized that it caused a decrease in atmospheric carbon dioxide levels. In the second Nature Geoscience paper, titled "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2," the researchers tested the carbon dioxide drawdown prediction. By studying fossil plant cuticle material, they determined the amount of carbon dioxide in the atmosphere at the time the plants were growing. (The cuticle samples were collected from sites representing the western shore of the Western Interior Seaway, in present-day southwestern Utah.)

This work found that before the onset of ocean anoxia, the level of carbon dioxide in the atmosphere increased by approximately 20 percent. This significant increase is consistent with the volcanic activity invoked by the first Northwestern study (described above). The paleo-carbon dioxide reconstruction also detected two episodes of marked decrease in carbon dioxide levels -- up to 200 parts per million -- at the time of the early phase of marine carbon burial. This observation provides strong support for the carbon dioxide drawdown hypothesis.

"Our research highlights the previously unappreciated role that the sulfur cycle plays in regulating nutrient cycling, the carbon cycle and climate," said Matthew Hurtgen, assistant professor of Earth and planetary sciences in the Weinberg College of Arts and Sciences at Northwestern and lead researcher of the first study.

"These two complementary studies provide a much clearer picture of how the Earth's carbon cycle was dramatically affected by catastrophic natural events long ago," said Bradley Sageman, professor and chair of Earth and planetary sciences at Northwestern and a co-author of both papers. "Although these events played out over hundreds or thousands of years, the magnitude of the changes, in carbon dioxide levels for example, are similar to those of the last 150 years resulting from human influence on the carbon cycle. The evidence demonstrates that the modern carbon cycle has been accelerated by orders of magnitude."

The sulfur work reported in the paper "Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2" was conducted by Derek D. Adams, a doctoral candidate in Hurtgen's research group. Adams is first author of the paper; Hurtgen and Sageman are the paper's other authors.

Richard S. Barclay, a doctoral candidate in Sageman's research group, is the first author of the "Carbon sequestration activated by a volcanic carbon dioxide pulse during ocean anoxic event 2" paper. Sageman also is an author, and the third author is Jennifer McElwain, a professor from University College Dublin who co-advises Barclay's research and is one of the originators of the cuticle analysis method.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>