Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California heatwaves to move toward coasts, study finds

30.08.2012
The nature of California heatwaves is changing due to global warming, a new study suggests.

Climate researchers Alexander Gershunov and Kristen Guirguis, with the Scripps Institution of Oceanography, UC San Diego, detected a trend toward more humid heatwaves that are expressed very strongly in elevated nighttime temperatures, a trend consistent with climate change projections.

Moreover, relative to local warming, the mid-summer heatwaves are getting stronger in generally cooler coastal areas. This carries implications for the millions of Californians living near the ocean whose everyday lives are acclimated to moderate temperatures.

"Heatwaves are stressful rare extremes defined relative to average temperatures," said Gershunov. "We've known for a while that humid heatwaves that are particularly hot at night are on the rise in California as the climate warms. Here, we sharpen the geographic focus to consider sub-regions of the state."

Gershunov added that in this new sharper and "non-stationary" perspective, coastal heatwaves express much more intensely than those inland, where the summertime mean warming is stronger. This translates to a variety of impacts on the typically cool, un-acclimated coast.

Classic California heatwaves have been characterized as interior desert and valley events that are hot during the day and marked by dryness and strong nighttime cooling. Gershunov and Guirguis said their analysis of observations and computer model data indicates that the emerging flavor of heatwaves - marked by greater humidity, greater expression in nighttime temperatures, and greater expression in coastal areas relative to the generally cooler coast - are intensifying and will keep intensifying in coming decades. Both coastal and desert heatwaves will continue to be more common as climate changes relative to the past, but the desert heatwaves are becoming less intense relative to strong average warming observed and projected for the interior of the state.

The study, "California heat waves in the present and future," will be published in Geophysical Research Letters, a publication of the American Geophysical Union.

The "non-stationary" approach reflects an acknowledgment by scientists that what has been considered extreme heat is gradually becoming commonplace. The rate of climate warming necessitates a measure of extreme heat relative to the changing average climate rather than to historical climate norms. So, instead of defining heatwaves relative to fixed temperature thresholds, the researchers projected heatwave intensity against a backdrop of increasing average summertime temperature. This causes the definition of heatwaves - temperatures in the warmest 5 percent of summertime conditions - to evolve with the changing climate and reflect extreme conditions relevant to the climate of the time.

"The advantage of using this evolving 'non-stationary' definition is that heatwaves remain extreme events even under much warmer climate," said Gershunov. "If they change in this evolving framework, it's because the variance of temperature is changing, not just the average."

The authors point out that the trend could precipitate a variety of changes in California's coastal communities, where stronger heat will lead to the installation of air conditioners in homes traditionally not in need of cooling. This lifestyle trend would in turn affect energy demand in coastal areas, its magnitude and timing. In the absence of technological or physiological acclimatization, high humidity and the lingering of heat through the night is expected to have strong public health implications, placing added stress on many of the more than 21 million Californians who live in coastal counties. The same would be true for animals and plants living in the highly populated and diverse coastal zone.

"This trend has important human health implications for coastal California where most of the state's population lives," said Guirguis. "Coastal communities are acclimated to cooler mean temperatures and are not well prepared for extreme heat either physiologically or technologically through air conditioning use. Populations tend to adapt to changes in their average conditions but extreme events can catch people off guard. An increase in heat wave intensity relative to average conditions could mean much more heat-related illness during heat waves unless effective heat emergency plans are implemented."

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions
who have registered with AGU can download a PDF copy of this paper in press by
clicking on this link:
http://dx.doi.org/10.1029/2012GL052979
Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at
kramsayer@agu.org. Please provide your name, the name of your publication, and your phone

number.

Neither the paper nor this press release are under embargo.
An online version of this release, with an accompanying image, will be posted on the AGU website later today.
Title:
"California heat waves in the present and future"
Authors:
Alexander Gershunov and Kristen Guirguis: Scripps Institution of Oceanography, University of

California San Diego, USA.

Contact information for the authors:
Alexander Gershunov, Telephone: (858) 534-8418, Email: agershunov@ucsd.edu

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org
http://dx.doi.org/10.1029/2012GL052979

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>