Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to the future to determine if sea level rise is accelerating

09.05.2014

Scientists have developed a new method for revealing how sea levels might rise around the world throughout the 21st century to address the controversial topic of whether the rate of sea level rise is currently increasing.

The international team of researchers, led by the University of Southampton and including scientists from the National Oceanography Centre, the University of Western Australia, the University of South Florida, the Australian National University and the University of Seigen in Germany, analysed data from 10 long-term sea level monitoring stations located around the world. They looked into the future to identify the timing at which sea level accelerations might first be recognised in a significant manner.


This is a tide guage at National Oceanography Centre in Liverpool, UK.

Credit: University of Southampton

Lead author Dr Ivan Haigh, Lecturer in Coastal Oceanography at the University of Southampton, says: "Our results show that by 2020 to 2030, we could have some statistical certainty of what the sea level rise situation will look like for the end of the century. That means we'll know what to expect and have 70 years to plan. In a subject that has so much uncertainty, this gives us the gift of long-term planning.

"As cities, including London, continue to plan for long-term solutions to sea level rise, we will be in a position to better predict the long-term situation for the UK capital and other coastal areas across the planet. Scientists should continue to update the analysis every 5 to 10 years, creating more certainty in long-term planning — and helping develop solutions for a changing planet."

The study found that the most important approach to the earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual (occurring between years, or from one year to the next) to multidecadal (involving multiple decades) variability in sea level records.

"The measured sea levels reflect a variety of processes operating at different time scales," says co-author Dr Francisco Calafat, from the National Oceanography Centre. He adds, "One of the main difficulties in detecting sea level accelerations is the presence of decadal and multi-decadal variations.

For example, processes associated with the North Atlantic Oscillation have a strong influence on the sea levels around the UK over multi-decadal periods. Such processes introduce a large amount of 'noise' into the record, masking any underlying acceleration in the rate of rise. Our study shows, that by adequately understanding these processes and removing their influence, we can detect accelerations much earlier."

Co-author Professor Eelco Rohling, from the Australian National University and formerly of the University of Southampton, adds: "By developing a novel method that realistically approximates future sea level rise, we have been able to add new insight to the debate and show that there is substantial evidence for a significant recent acceleration in the sea level rise on a global and regional level. However, due to the large 'noise' signals at some local coastal sites, it won't be until later this decade or early next decade before the accelerations in sea level are detection at these individual tide gauge sites."

###

The findings of the study, funded by the Natural Environmental Research Council (iGlass consortium), are published in this months issue of the journal Nature Communications.

Glenn Harris | Eurek Alert!

Further reports about: Coastal Environmental Oceanography Southampton acceleration long-term

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>