Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AWI permafrost researchers start work in the new research station in the Russian Lena Delta

Samoylov Station: Putin’s promised new building now in operation

Permafrost experts of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research are currently conducting a multi-week spring expedition to the Lena Delta where they are investigating the interaction between the atmosphere, snow cover and the frozen earth of the tundra.

That they are able to live and conduct their research at less than spring temperatures of up to minus 30 degrees Celsius is attributable to the new Russian research station “Samoylov”. The impressive building was erected at the initiative of the Russian head of state Vladimir Putin and for one week has replaced the old German-Russian station from 1998 where scientists were only able to work in the short Siberian summer.

From the point of view of the permafrost researchers from the Alfred Wegener Institute, spring in the tundra is still one of the great unknowns. “In April and May the temperatures increase to above the zero mark. The ice on the lakes and ponds starts to break up and the snow cover begins to melt. Meltwater then penetrates virtually every pore, distributing heat and substances in the soil.

There are close-meshed interactions between the atmosphere, snow cover and the underlying permafrost ground. However, so far we have not been able to delve more deeply into these interactions because our old research station on the Island of Samoylov was too small. It could only be operated from July to September. The new station now offers so much space that no scientist need sleep in a tent again and experiments on the snow and ice melts are now possible“, says the head of the expedition Dr. Moritz Langer from the Potsdam Research Unit of the Alfred Wegener Institute (AWI). He and 13 colleagues were the first research team to install themselves in the new Russian Samoylov Station on Wednesday, 17 April 2013.

The Russian head of state Vladimir Putin commissioned the building after having visited the old station in the summer of 2010. Putin was impressed by the work of the team of German and Russian scientists and promised to improve their working conditions by building a new station. The responsibility for the operation and supply of the new building is borne by the Siberian Department of the Russian Academy of Sciences (SBRAS) – a long-standing partner of the Alfred Wegener Institute. Representatives of both research institutions recently entered into a cooperation agreement on scientific cooperation in Novosibirsk in the Arctic. They then signed a treaty on the operation of the new Samoylov station in March of this year.

The AWI scientists now live and work as guests at the modern Russian research station. It offers the researchers not only sufficient space for laboratory and sleeping, but also has a meeting room, a high performance internet connection, several machines with which soil samples can be taken from great depths, as well as a small technical equipment and vehicle pool which includes quads and snowmobiles, a track vehicle and several boats, providing the best foundation for informative field research in the Lena Delta.

The AWI permafrost researchers will be concentrating on one complex this spring: “We wish to understand how heat from the atmosphere penetrates the ground. To find this out we will be examining more closely how the snow distributes on the island, which profile, which thickness and which crystal structure the snow blanket has and how the thawing process functions”, explains Moritz Langer. The answers to these questions are to help better understand the physical processes in the permafrost soil and to be able to predict more precisely the future development of the permanently frozen regions.

The permafrost regions of the Arctic have been increasingly moving into the focus of climate research in recent years. The reason for this is that as soon as the ground thaws, the greenhouse gases methane and carbon dioxide are released. This is triggered by bacteria which start to decompose the animal and plant remains in the soil. Carbon dioxide and methane are created as produced in the metabolic process of almost all animals. If the ground now thaws as a result of climate change also in deeper layers or if the permafrost even disappears completely, the bacteria can also decompose the remains which have been stored in the deep frozen soils for thousands of years. This fact makes the permafrost soils a very interesting scientific element of the global climate system. The more greenhouse gases are released into the atmosphere by the thawing soil, the stronger it heats up and the greater the probability that the temperature in regions with permafrost will rise and the permafrost soils will thaw even more expansively. In this case, scientists speak of a “positive feedback”.

Researchers of the Alfred Wegener Institutes have been examining the changes in the permafrost soils of the Russian tundra for 15 years now. The current research work is also part of the major EU permafrost project PAGE21 (, which is coordinated by the AWI.

Notes for Editors
Please find printable images of AWI permafrost research projects in the Russian Lena delta in the online version of this press release:

English web blog of this expedition:

German blog, pictures and small videos of the 2012 summer expedition are on our homepage under this link:


Your scientific contact person at the Alfred Wegener Institute is Professor Dr Hans-Wolfgang Hubberten, Head of the Research Unit Potsdam (phone +49 331 288-2100, e-mail: Scientists at Samoylov can be contacted via e-mail only. For enquiries to Dr Moritz Langer and his expedition team please contact Sina Löschke at the AWI Communications Department (phone +49 471 4831 2008, e-mail:

Follow the Alfred Wegener Institute on Twitter ( and Facebook ( for all current news and information on everyday stories from the life of the Institute.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>