Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aquatic Life Declines at Early Stages of Urban Development

The number of native fish and aquatic insects, especially those that are pollution sensitive, declines in urban and suburban streams at low levels of development — levels often considered protective for stream communities, according to a new study by the U.S. Geological Survey.

“When the area of driveways, parking lots, streets and other impervious cover reaches 10 percent of a watershed area, many types of pollution sensitive aquatic insects decline by as much as one third, compared to streams in undeveloped forested watersheds,” said Tom Cuffney, USGS biologist. “We learned that there is no ‘safezone,’ meaning that even minimal or early stages of development can negatively affect aquatic life in urban streams.”

As a watershed becomes developed, the amount of pavement, sidewalks and other types of urban land cover increases. During storms, water is rapidly transported over these urban surfaces to streams. The rapid rise and fall of stream flow and changes in temperature can be detrimental to fish and aquatic insects. Stormwater from urban development can also contain fertilizers and insecticides used along roads and on lawns, parks and golf courses.

"Stream protection and management is a top priority of state and local officials, and these findings remind us of the unintended consequences that development can have on our aquatic resources," said Tom Schueler, Chesapeake Stormwater Network coordinator. "The information has been useful in helping us to predict and manage the future impacts of urban development on streams and reinforces the importance of having green infrastructure to control stormwater runoff and protect aquatic life."

USGS studies examine the effects of urbanization on algae, aquatic insects, fish, habitat and chemistry in urban streams in nine metropolitan areas across the country: Boston, Mass.; Raleigh, N.C.; Atlanta, Ga.; Birmingham, Ala.; Milwaukee-Green Bay, Wis.; Denver, Colo.; Dallas-Fort Worth, Texas; Salt Lake City, Utah; and Portland, Ore.

These USGS studies also show that land cover prior to urbanization can affect how aquatic insects and fish respond to urbanization. For example, aquatic communities in urban streams in Denver, Dallas-Fort Worth and Milwaukee did not decline in response to urbanization because the aquatic communities were already degraded by previous agricultural land-use activities. In contrast, aquatic communities declined in response to urbanization in metropolitan areas where forested land was converted to urban land, areas such as Boston and Atlanta.

Comparisons among the nine areas show that not all urban streams respond exactly the same. This is mostly because stream quality and aquatic health reflect a complex combination of land and chemical use, land and storm-water management, population density and watershed development, and natural features, such as soils, hydrology, and climate.

These USGS studies represent an integrated approach to understanding urban streams that includes physical, chemical and biological characteristics associated with urbanization. This is critical for prioritizing strategies for stream protection and restoration and in evaluating the effectiveness of those strategies over time.

For more information, listen to USGS Corecast Episode 127. The full report and extended video podcasts are available at the National Water Quality Assessment program urban studies website.

Kara Capelli | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>