Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquatic Life Declines at Early Stages of Urban Development

04.06.2010
The number of native fish and aquatic insects, especially those that are pollution sensitive, declines in urban and suburban streams at low levels of development — levels often considered protective for stream communities, according to a new study by the U.S. Geological Survey.

“When the area of driveways, parking lots, streets and other impervious cover reaches 10 percent of a watershed area, many types of pollution sensitive aquatic insects decline by as much as one third, compared to streams in undeveloped forested watersheds,” said Tom Cuffney, USGS biologist. “We learned that there is no ‘safezone,’ meaning that even minimal or early stages of development can negatively affect aquatic life in urban streams.”

As a watershed becomes developed, the amount of pavement, sidewalks and other types of urban land cover increases. During storms, water is rapidly transported over these urban surfaces to streams. The rapid rise and fall of stream flow and changes in temperature can be detrimental to fish and aquatic insects. Stormwater from urban development can also contain fertilizers and insecticides used along roads and on lawns, parks and golf courses.

"Stream protection and management is a top priority of state and local officials, and these findings remind us of the unintended consequences that development can have on our aquatic resources," said Tom Schueler, Chesapeake Stormwater Network coordinator. "The information has been useful in helping us to predict and manage the future impacts of urban development on streams and reinforces the importance of having green infrastructure to control stormwater runoff and protect aquatic life."

USGS studies examine the effects of urbanization on algae, aquatic insects, fish, habitat and chemistry in urban streams in nine metropolitan areas across the country: Boston, Mass.; Raleigh, N.C.; Atlanta, Ga.; Birmingham, Ala.; Milwaukee-Green Bay, Wis.; Denver, Colo.; Dallas-Fort Worth, Texas; Salt Lake City, Utah; and Portland, Ore.

These USGS studies also show that land cover prior to urbanization can affect how aquatic insects and fish respond to urbanization. For example, aquatic communities in urban streams in Denver, Dallas-Fort Worth and Milwaukee did not decline in response to urbanization because the aquatic communities were already degraded by previous agricultural land-use activities. In contrast, aquatic communities declined in response to urbanization in metropolitan areas where forested land was converted to urban land, areas such as Boston and Atlanta.

Comparisons among the nine areas show that not all urban streams respond exactly the same. This is mostly because stream quality and aquatic health reflect a complex combination of land and chemical use, land and storm-water management, population density and watershed development, and natural features, such as soils, hydrology, and climate.

These USGS studies represent an integrated approach to understanding urban streams that includes physical, chemical and biological characteristics associated with urbanization. This is critical for prioritizing strategies for stream protection and restoration and in evaluating the effectiveness of those strategies over time.

For more information, listen to USGS Corecast Episode 127. The full report and extended video podcasts are available at the National Water Quality Assessment program urban studies website.

Kara Capelli | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>