Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic ice sheet quakes shed light on ice movement and earthquakes

24.08.2012
Analysis of small, repeating earthquakes in an Antarctic ice sheet may not only lead to an understanding of glacial movement, but may also shed light on stick slip earthquakes like those on the San Andreas fault or in Haiti, according to Penn State geoscientists.

"No one has ever seen anything with such regularity," said Lucas K. Zoet, recent Penn State Ph. D. recipient, now a postdoctoral fellow at Iowa State University. "An earthquake every 25 minutes for a year."

The researchers looked at seismic activity recorded during the Transantarctic Mountains Seismic Experiment from 2002 to 2003 on the David Glacier in Antarctica, coupled with data from the Global Seismic Network station Vanda. They found that the local earthquakes on the David Glacier, about 20,000 identified, were predominantly the same and occurred every 25 minutes give or take five minutes.

The researchers note in the current Nature Geoscience that, "The remarkable similarity of the waveforms … indicates that they share the same source location and source mechanisms." They suggest that "the same subglacial asperity repeatedly ruptures in response to steady loading from the overlying ice, which is modulated by stress from the tide at the glacier front."

"Our leading idea is that part of the bedrock is poking through the ductile till layer beneath the glacier," said Zoet.

The researchers have determined that the asperity -- or hill -- is about a half mile in diameter.

The glacier, passing over the hill, creates a stick slip situation much like that on the San Andreas fault. The ice sticks on the hill and stress gradually builds until the energy behind the obstruction is high enough to move the ice forward. The ice moves in a step-by-step manner rather than smoothly.

But motion toward the sea is not the only thing acting on the ice streaming from David glacier. Like most glaciers near oceans, the edge of the ice floats out over the water and the floating ice is subject to the action of tides.

"When the tide comes in it pushes back on the ice, making the time between slips slightly longer," said Sridhar Anandakrishnan, professor of geoscience. "When the tide goes out, the time between slips decreases."

However, the researchers note that the tides are acting at the ground line, a long way from the location of the asperity and therefore the effects that shorten or lengthen the stick slip cycle are delayed.

"This was something we didn't expect to see," said Richard B. Alley, Evan Pugh Professor of Geosciences. "Seeing it is making us reevaluate the basics."

He also noted that these glacial earthquakes, besides helping glaciologists understand the way ice moves, can provide a simple model for the stick slip earthquakes that occur between landmasses.

"We have not completely explained how ice sheets flow unless we can reproduce this effect," said Alley. "We can use this as a probe and look into the physics so we better understand how glaciers move."

Before 2002, this area of the David glacier flowed smoothly, but then for nearly a year the 20-minute earthquake intervals occurred and then stopped. Something occurred at the base of the ice to start and then stop these earthquakes.

"The best idea we have is that during those 300 days, a dirty patch of ice was in contact with the mount, changing the way stress was transferred," said Zoet. "The glacier is experiencing earthquakes again, although at a different rate. It would be nice to study that."

Unfortunately, the seismographic instruments that were on the glacier in 2002 no longer exist, and information is coming from only one source at the moment.

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>