Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic ice sheet quakes shed light on ice movement and earthquakes

24.08.2012
Analysis of small, repeating earthquakes in an Antarctic ice sheet may not only lead to an understanding of glacial movement, but may also shed light on stick slip earthquakes like those on the San Andreas fault or in Haiti, according to Penn State geoscientists.

"No one has ever seen anything with such regularity," said Lucas K. Zoet, recent Penn State Ph. D. recipient, now a postdoctoral fellow at Iowa State University. "An earthquake every 25 minutes for a year."

The researchers looked at seismic activity recorded during the Transantarctic Mountains Seismic Experiment from 2002 to 2003 on the David Glacier in Antarctica, coupled with data from the Global Seismic Network station Vanda. They found that the local earthquakes on the David Glacier, about 20,000 identified, were predominantly the same and occurred every 25 minutes give or take five minutes.

The researchers note in the current Nature Geoscience that, "The remarkable similarity of the waveforms … indicates that they share the same source location and source mechanisms." They suggest that "the same subglacial asperity repeatedly ruptures in response to steady loading from the overlying ice, which is modulated by stress from the tide at the glacier front."

"Our leading idea is that part of the bedrock is poking through the ductile till layer beneath the glacier," said Zoet.

The researchers have determined that the asperity -- or hill -- is about a half mile in diameter.

The glacier, passing over the hill, creates a stick slip situation much like that on the San Andreas fault. The ice sticks on the hill and stress gradually builds until the energy behind the obstruction is high enough to move the ice forward. The ice moves in a step-by-step manner rather than smoothly.

But motion toward the sea is not the only thing acting on the ice streaming from David glacier. Like most glaciers near oceans, the edge of the ice floats out over the water and the floating ice is subject to the action of tides.

"When the tide comes in it pushes back on the ice, making the time between slips slightly longer," said Sridhar Anandakrishnan, professor of geoscience. "When the tide goes out, the time between slips decreases."

However, the researchers note that the tides are acting at the ground line, a long way from the location of the asperity and therefore the effects that shorten or lengthen the stick slip cycle are delayed.

"This was something we didn't expect to see," said Richard B. Alley, Evan Pugh Professor of Geosciences. "Seeing it is making us reevaluate the basics."

He also noted that these glacial earthquakes, besides helping glaciologists understand the way ice moves, can provide a simple model for the stick slip earthquakes that occur between landmasses.

"We have not completely explained how ice sheets flow unless we can reproduce this effect," said Alley. "We can use this as a probe and look into the physics so we better understand how glaciers move."

Before 2002, this area of the David glacier flowed smoothly, but then for nearly a year the 20-minute earthquake intervals occurred and then stopped. Something occurred at the base of the ice to start and then stop these earthquakes.

"The best idea we have is that during those 300 days, a dirty patch of ice was in contact with the mount, changing the way stress was transferred," said Zoet. "The glacier is experiencing earthquakes again, although at a different rate. It would be nice to study that."

Unfortunately, the seismographic instruments that were on the glacier in 2002 no longer exist, and information is coming from only one source at the moment.

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>