Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Magma "Superpiles" May Have Shaped the Continents

17.12.2008
Two giant plumes of hot rock deep within the earth are linked to the plate motions that shape the continents, researchers have found.

The two superplumes, one beneath Hawaii and the other beneath Africa, have likely existed for at least 200 million years, explained Wendy Panero, assistant professor of earth sciences at Ohio State University.

The giant plumes -- or "superpiles" as Panero calls them -- rise from the bottom of Earth's mantle, just above our planet's core. Each is larger than the continental United States. And each is surrounded by a wall of plates from Earth's crust that have sunk into the mantle.

She and her colleagues reported their findings at the American Geophysical Union meeting in San Francisco.

Computer models have connected the piles to the sunken former plates, but it's currently unclear which one spawned the other, Panero said. Plates sink into the mantle as part of the normal processes that shape the continents. But which came first, the piles or the plates, the researchers simply do not know.

"Do these superpiles organize plate motions, or do plate motions organize the superpiles? I don't know if it's truly a chicken-or-egg kind of question, but the locations of the two piles do seem to be related to where the continents are today, and where the last supercontinent would have been 200 million years ago," she said.

That supercontinent was Pangea, and its breakup eventually led to the seven continents we know today.

Scientists first proposed the existence of the superpiles more than a decade ago. Earthquakes offer an opportunity to study them, since they slow the seismic waves that pass through them. Scientists combine the seismic data with what they know about Earth's interior to create computer models and learn more.

But to date, the seismic images have created a mystery: they suggest that the superpiles have remained in the same locations, unchanged for hundreds of millions of years.

"That's a problem," Panero said. "We know that the rest of the mantle is always moving. So why are the piles still there?"

Hot rock constantly migrates from the base of the mantle up to the crust, she explained. Hot portions of the mantle rise, and cool portions fall. Continental plates emerge, then sink back into the earth.

But the presence of the superpiles and the location of subducted plates suggest that the two superpiles have likely remained fixed to the Earth's core while the rest of the mantle has churned around them for millions of years.

Unlocking this mystery is the goal of the Cooperative Institute for Deep Earth Research (CIDER) collaboration, a group of researchers from across the United States who are attempting to unite many different disciplines in the study of Earth's interior.

Panero provides CIDER her expertise in mineral physics; others specialize in geodynamics, geomagnetism, seismology, and geochemistry. Together, they have assembled a new model that suggests why the two superpiles are so stable, and what they are made of.

As it turns out, just a tiny difference in chemical composition can keep the superpiles in place, they found.

The superpiles contain slightly more iron than the rest of the mantle; their composition likely consists of 11-13 percent iron instead of 10-12 percent. But that small change is enough to make the superpiles denser than their surroundings.

"Material that is more dense is going to sink to the base of the mantle," Panero said. "It would normally spread out at that point, but in this case we have subducting plates that are coming down from above and keeping the piles contained."

CIDER will continue to explore the link between the superpiles and the plates that surround them. The researchers will also work to explain the relationship between the superpiles and other mantle plumes that rise above them, which feed hotspots such as those beneath Hawaii and mid-ocean ridges. Ultimately, they hope to determine whether the superpiles may have contributed to the breakup of Pangea.

This work was funded by the National Science Foundation.

Contact: Wendy Panero, (614) 292-6290; Panero.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>