Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Fossilized Sea Creatures Yield Oldest Biomolecules Isolated Directly From a Fossil

20.02.2013
Though scientists have long believed that complex organic molecules couldn’t survive fossilization, some 350-million-year-old remains of aquatic sea creatures uncovered in Ohio, Indiana, and Iowa have challenged that assumption.

The spindly animals with feathery arms—called crinoids, but better known today by the plant-like name “sea lily”—appear to have been buried alive in storms during the Carboniferous Period, when North America was covered with vast inland seas. Buried quickly and isolated from the water above by layers of fine-grained sediment, their porous skeletons gradually filled with minerals, but some of the pores containing organic molecules were sealed intact.

That’s the conclusion of Ohio State University geologists, who extracted the molecules directly from individual crinoid fossils in the laboratory, and determined that different species of crinoid contained different molecules. The results will appear in the March issue of the journal Geology.

William Ausich, professor in the School of Earth Sciences at Ohio State and co-author of the paper, explained why the organic molecules are special.

“There are lots of fragmented biological molecules—we call them biomarkers—scattered in the rock everywhere. They’re the remains of ancient plant and animal life, all broken up and mixed together,” he said. “But this is the oldest example where anyone has found biomarkers inside a particular complete fossil. We can say with confidence that these organic molecules came from the individual animals whose remains we tested.”

The molecules appear to be aromatic compounds called quinones, which are found in modern crinoids and other animals. Quinones sometimes function as pigments or as toxins to discourage predators.

Lead author Christina O’Malley, who completed this work to earn her doctoral degree, first began the study when she noticed something strange about some crinoids that had perished side by side and become preserved in the same piece of rock: the different species were preserved in different colors.

In one rock sample used in the study, one crinoid species appears a light bluish-gray, while another appears dark gray and yet another more of a creamy white. All stand out from the color of the rock they were buried in. The researchers have since found similar fossil deposits from around the Midwest.

“People noticed the color differences 100 years ago, but no one ever investigated it,” O’Malley said. “The analytical tools were not available to do this kind of work as they are today.”

O’Malley isolated the molecules by grinding up small bits of fossil and dissolving them into a solution. Then she injected a tiny sample of the solution into a machine called a gas chromatograph mass spectrometer. The machine vaporized the solution so that a magnet could separate individual molecules based on electric charge and mass. Computer software identified the molecules as similar to quinones.

Then, with study co-author and Ohio State geochemist Yu-Ping Chin, she compared the organic molecules from the fossils with the molecules that are common in living crinoids today. Just as the researchers suspected, quinone-like molecules occur in both living crinoids and their fossilized ancestors.

Though different colored fossils contained different quinones, the researchers cautioned that there’s no way to tell whether the quinones functioned as pigments, or that the preserved colors as they appear today were similar to the colors that the crinoids had in life.

Part of why the crinoids were so well preserved has to do with the structure of their skeletons, the researchers said. Like sand dollars, crinoids have skin on top of a hard calcite shell. In the case of crinoids, their long bodies are made up of thousands of stacked calcite rings, and each ring is a single large calcite crystal that contains pores filled with living tissue. When a crinoid dies, the tissue will start to decay, but calcite will precipitate into the pores, and calcite is stable over geologic time. Thus, organic matter may become sealed whole within the rock.

“We think that rock fills in the skeleton according to how the crystals are oriented. So it’s possible to find large crystals filled in such a way that they have organic matter still trapped inside,” Ausich said.

The location of the fossils was also key to their preservation. In the flat American Midwest, the rocks weren’t pushed up into mountain chains or heated by volcanism, so from the Ohio State geologists’ perspective, they are pristine.

Their next challenge is to identify the exact type of quinone molecules they found, and determine how much information about individual species can be gleaned from them.

“These molecules are not DNA, and they’ll never be as good as DNA as a means to define evolutionary relationships, but they could still be useful,” Ausich said. “We suspect that there’s some kind of biological signal there—we just need to figure out how specific it is before we can use it as a means to track different species.”

This research was sponsored by the National Science Foundation and the Geological Society of America.

Contacts: Christina O'Malley, Omalley.47@osu.edu
William Ausich, (614) 292-3353; Ausich.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>