Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting to Extreme Environments

04.05.2009
A student at Dalhousie University in Halifax, Nova Scotia is bringing understanding to the troubling problem of ocean acidification due to increasing atmospheric carbon dioxide.

As an undergraduate, Kim Davies worked with Dr. Verena Tunnicliffe, biology professor at the University Victoria, examining how mussels have adapted to extremely acidic waters near underwater volcanoes. The paper she co-authored will be published in the May issue of the journal Nature Geoscience.

“It’s such a euphoric feeling to see that something I did as an undergrad is regarded as important science,” says Ms. Davies, a PhD student at Dalhousie whose research is now focused on the feeding ecology of the North Atlantic right whale. “Wow, it’s so great just to see your name in a high-level journal.”

Carbon dioxide (CO2) emitted to the atmosphere by human activities is being absorbed by the oceans, making them more acidic. Evidence indicates that emissions of carbon dioxide from human activities over the past two centuries have already led to a reduction in the average pH of surface seawater. Because acidification affects the process of calcification, the impact is severe on marine animals like corals, plankton and mollusks which have shells or plates.

So what happens to these animals over time? That’s what the researchers wanted to find out by examining vent mussels (Bathymodiolus brevior) living on the side of submarine volcanoes. The mussels, which have a calcium carbonate skeleton, are under constant stress, bathed by carbon dioxide bubbling out of the ground and from hydro-thermal vents deep beneath the surface.

And yet some of the mussels, gathered by remotely operated vehicles along the Mariano volcanic arc near Japan, were determined to be more than 40 years old and had physiologically adapted to living in their extreme environment.

The researchers discovered the mussels grew much slower than mussels in other areas and their shells were very thin. As well, the mussels’ shells were completely covered with protective protein coverings; any breach of that outer layer would quickly destroy the mussel by dissolving the underlying calcium carbonate.

“Their shells—you could see right through them,” says Ms. Davies, who did the lab analysis of samples gathered some 1,500 metres below the surface. “And yet, this species of mussels was able to adapt and build up a tolerance living close to these hydro-thermal vents as long as their protective covering was intact.”

She surmised mussels in other areas would be more vulnerable to ocean acidification because of crabs that scurry over them and wear away at their protective covering. Those predators were absent in the mussel beds near the hydro-thermal vents.

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>