Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Maybe it's raining less than we thought

Michigan Tech physicists make a splash with raindrops discovery

It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier. And no raindrop can fall faster than its "terminal speed"—its speed when the downward force of gravity is exactly the same as the upward air resistance.

Now two physicists from Michigan Technological University and colleagues at the Universidad Nacional Autónoma de México (National University of Mexico) have discovered that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops that size and weight are supposed to be able to fall.

And that could mean that the weatherman has been overestimating how much it rains.

The findings of Michigan Tech physics professors Alexander Kostinski and Raymond Shaw—co-authors with Guillermo Montero-Martinez and Fernando Garcia-Garcia on a paper scheduled for publication online June 13, 2009, in the American Geophysical Union's journal Geophysical Research Letters—could improve the accuracy of weather measurement and prediction.

The researchers gathered data during natural rainfalls at the Mexico City campus of the National University of Mexico. They studied approximately 64,000 raindrops over three years, using optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm or computational formula to analyze the raindrop sizes.

They found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. They think that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw explains. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

Their findings could significantly alter physicists' understanding of the physics of rain.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," Shaw and Kostinski say. If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded.

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," Shaw pointed out.

Taking super-terminal raindrops into account could be of real economic benefit, even if it leads only to incremental improvements in precipitation measurement and forecasting. Approximately one-third of the economy—including agriculture, construction and aviation—is directly influenced by the ability to predict precipitation accurately. "And one-third of the economy is a very large sum of money, even during a recession," Shaw remarks.

The physicists' research was supported in part by the National Science Foundation.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers nearly 130 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>