Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maybe it's raining less than we thought

15.06.2009
Michigan Tech physicists make a splash with raindrops discovery

It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier. And no raindrop can fall faster than its "terminal speed"—its speed when the downward force of gravity is exactly the same as the upward air resistance.

Now two physicists from Michigan Technological University and colleagues at the Universidad Nacional Autónoma de México (National University of Mexico) have discovered that it ain't necessarily so.

Some smaller raindrops can fall faster than bigger ones. In fact, they can fall faster than their terminal speed. In other words, they can fall faster than drops that size and weight are supposed to be able to fall.

And that could mean that the weatherman has been overestimating how much it rains.

The findings of Michigan Tech physics professors Alexander Kostinski and Raymond Shaw—co-authors with Guillermo Montero-Martinez and Fernando Garcia-Garcia on a paper scheduled for publication online June 13, 2009, in the American Geophysical Union's journal Geophysical Research Letters—could improve the accuracy of weather measurement and prediction.

The researchers gathered data during natural rainfalls at the Mexico City campus of the National University of Mexico. They studied approximately 64,000 raindrops over three years, using optical array spectrometer probes and a particle analysis and collecting system. They also modified an algorithm or computational formula to analyze the raindrop sizes.

They found clusters of raindrops falling faster than their terminal speed, and as the rainfall became heavier, they saw more and more of these unexpectedly speedy drops. They think that the "super-terminal" drops come from the break-up of larger drops, which produces smaller fragments all moving at the same speed as their parent raindrop and faster than the terminal speed predicted by their size.

"In the past, people have seen indications of faster-than-terminal drops, but they always attributed it to splashing on the instruments," Shaw explains. He and his colleagues took special precautions to prevent such interference, including collecting data only during extremely calm conditions.

Their findings could significantly alter physicists' understanding of the physics of rain.

"Existing rain models are based on the assumption that all drops fall at their terminal speed, but our data suggest that this is not the case," Shaw and Kostinski say. If rainfall is measured based on that assumption, large raindrops that are not really there will be recorded.

"If we want to forecast weather or rain, we need to understand the rain formation processes and be able to accurately measure the amount of rain," Shaw pointed out.

Taking super-terminal raindrops into account could be of real economic benefit, even if it leads only to incremental improvements in precipitation measurement and forecasting. Approximately one-third of the economy—including agriculture, construction and aviation—is directly influenced by the ability to predict precipitation accurately. "And one-third of the economy is a very large sum of money, even during a recession," Shaw remarks.

The physicists' research was supported in part by the National Science Foundation.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers nearly 130 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>