Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Greener' climate prediction shows plants slow warming

08.12.2010
A new NASA computer modeling effort has found that additional growth of plants and trees in a world with doubled atmospheric carbon dioxide levels would create a new negative feedback – a cooling effect – in the Earth's climate system that could work to reduce future global warming.

The cooling effect would be -0.3 degrees Celsius (C) (-0.5 Fahrenheit (F)) globally and -0.6 degrees C (-1.1 F) over land, compared to simulations where the feedback was not included, said Lahouari Bounoua, of Goddard Space Flight Center, Greenbelt, Md. Bounoua is lead author on a paper detailing the results that will be published Dec. 7 in the journal Geophysical Research Letters.

Without the negative feedback included, the model found a warming of 1.94 degrees C globally when carbon dioxide was doubled.

Bounoua stressed that while the model's results showed a negative feedback, it is not a strong enough response to alter the global warming trend that is expected. In fact, the present work is an example of how, over time, scientists will create more sophisticated models that will chip away at the uncertainty range of climate change and allow more accurate projections of future climate.

"This feedback slows but does not alleviate the projected warming," Bounoua said.

To date, only some models that predict how the planet would respond to a doubling of carbon dioxide have allowed for vegetation to grow as a response to higher carbon dioxide levels and associated increases in temperatures and precipitation.

Of those that have attempted to model this feedback, this new effort differs in that it incorporates a specific response in plants to higher atmospheric carbon dioxide levels. When there is more carbon dioxide available, plants are able to use less water yet maintain previous levels of photosynthesis. The process is called "down-regulation." This more efficient use of water and nutrients has been observed in experimental studies and can ultimately lead to increased leaf growth. The ability to increase leaf growth due to changes in photosynthetic activity was also included in the model. The authors postulate that the greater leaf growth would increase evapotranspiration on a global scale and create an additional cooling effect.

"This is what is completely new," said Bounoua, referring to the incorporation of down-regulation and changed leaf growth into the model. "What we did is improve plants' physiological response in the model by including down-regulation. The end result is a stronger feedback than previously thought."

The modeling approach also investigated how stimulation of plant growth in a world with doubled carbon dioxide levels would be fueled by warmer temperatures, increased precipitation in some regions and plants' more efficient use of water due to carbon dioxide being more readily available in the atmosphere. Previous climate models have included these aspects but not down-regulation. The models without down-regulation projected little to no cooling from vegetative growth.

Scientists agree that in a world where carbon dioxide has doubled – a standard basis for many global warming modeling simulations – temperature would increase from 2 to 4.5 degrees C (3.5 to 8.0 F). (The model used in this study found warming – without incorporating the plant feedback – on the low end of this range.) The uncertainty in that range is mostly due to uncertainty about "feedbacks" – how different aspects of the Earth system will react to a warming world, and then how those changes will either amplify (positive feedback) or dampen (negative feedback) the overall warming.

An example of a positive feedback would be if warming temperatures caused forests to grow in the place of Arctic tundra. The darker surface of a forest canopy would absorb more solar radiation than the snowy tundra, which reflects more solar radiation. The greater absorption would amplify warming. The vegetative feedback modeled in this research, in which increased plant growth would exert a cooling effect, is an example of a negative feedback. The feedback quantified in this study is a result of an interaction between all these aspects: carbon dioxide enrichment, a warming and moistening climate, plants' more efficient use of water, down-regulation and the ability for leaf growth.

This new paper is one of many steps toward gradually improving overall future climate projections, a process that involves better modeling of both warming and cooling feedbacks.

"As we learn more about how these systems react, we can learn more about how the climate will change," said co-author Forrest Hall, of the University of Maryland-Baltimore County and Goddard Space Flight Center. "Each year we get better and better. It's important to get these things right just as it's important to get the track of a hurricane right. We've got to get these models right, and improve our projections, so we'll know where to most effectively concentrate mitigation efforts."

The results presented here indicate that changes in the state of vegetation may already be playing a role in the continental water, energy and carbon budgets as atmospheric carbon dioxide increases, said Piers Sellers, a co-author from NASA's Johnson Space Center, Houston, Texas.

"We're learning more and more about how our planet really works," Sellers said. "We have suspected for some time that the connection between vegetation photosynthesis and the surface energy balance could be a significant player in future climate. This study gives us an indication of the strength and sign of one of these biosphere-atmosphere feedbacks."

For more information and related images, visit:
http://www.nasa.gov/topics/earth/features/cooling-plant-growth.html

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/cooling-plant-growth.html

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>