Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything—Bernstein Award 2014 for Raoul-Martin Memmesheimer

03.09.2014

Raoul-Martin Memmesheimer has been awarded one of the most attractive junior research prizes worldwide.

The physicist deals with the question of how nerve cells communicate by temporally precise electrical signals. The award was presented by State Secretary Dr. Georg Schütte from the Federal Ministry for Education and Research (BMBF) on September 3, 2014 during the Bernstein Conference in Göttingen. The Bernstein Award is endowed with up to € 1.25 million and enables outstanding young researchers to establish an independent research group at a German research institution. This year's award winner plans to establish his research group at the University of Göttingen.


Raoul-Martin Memmesheimer, laureate of the Bernstein Award 2014

Hans Günter Memmesheimer, 2014

How do groups of nerve cells process information? What is the role of signals that are timed on the precise millisecond? And how can a network of nerve cells learn to produce a specific rhythm of signals? "I am interested in the temporal characteristics of electrical signals, which neurons in biological neural networks use to communicate with each other," Memmesheimer says. The physicist’s tools are theoretical models. On their basis he wants to reconstruct and understand the complex dynamics of medium-sized nerve cell networks. His research takes place in close relation to experimental science: "We incorporate biological data in our network models," he describes, "and our theoretical models make concrete predictions, which are then investigated in real neural populations by experimental neuroscientists."

In his previous work, Memmesheimer for instance assessed the situation when several signals that arrive at a nerve cell at the same time can lead to a strong signal enhancement. The impact of this effect on the dynamics of a network is difficult to examine in living systems. Using his models, the neuroscientist revealed that the effect leads to characteristic rhythmic oscillations in the network. Subsequently, he learned: these rhythms actually exist in the hippocampus, the "memory center" of the brain.

With the investigation of neural networks — comprising some hundreds to thousands of neurons —Memmesheimer wants to contribute to closing the knowledge gap between the relatively well examined level of individual nerve cells and whole brain areas. On the one hand, this will help to understand the link between individual neurons and the entire brain’s activity. On the other hand, Memmesheimer’s findings facilitate artificial intelligence research. In the long term, he wants to develop highly biologically inspired algorithms that can recognize and predict temporal patterns. "This could be used to design even more sophisticated robots," says the brain scientist. He plans to pursue the questions of the brain’s temporal network dynamics at Göttingen University, where he wants to collaborate with scientists at the Bernstein Center and the Bernstein Focus Neurotechnology.

Raoul-Martin Memmesheimer studied theoretical physics at the universities of Kaiserslautern, Munich and Jena. Starting in 2004, he devoted himself to research, first as a graduate student and later as a postdoctoral fellow in the group of Marc Timme in the department of Theo Geisel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. He received his doctorate in 2007 and was honored with the Otto Hahn Medal of the Max Planck Society for his doctoral thesis. From 2008 to 2010 he worked as an independent Swartz Fellow at Harvard University (USA), where he collaborated with Haim Sompolinsky. Since April 2010 he is Assistant Professor in the Department for Neuroinformatics at the Donders Institute, Radboud University Nijmegen.

The Bernstein Award has been conferred for the ninth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:
Dr. Raoul-Martin Memmesheimer, Assistenzprofessor
Department for Neuroinformatics
Donders Institute for Brain, Cognition and Behavior
Radboud University Nijmegen
Heyendaalseweg 135
Nijmegen, Netherlands
Tel: +31 (0)24 365 2166
Email: r.memmesheimer@science.ru.nl

Weitere Informationen:

http://www.ru.nl/neuroinformatics/about_the_department/members/raoul-martin Webseite Raoul-Martin Memmesheimer
http://www.bernstein-conference.de Bernstein Konferenz
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.bfnt-goettingen.de Bernstein Fokus Neurotechnologie Göttingen
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Neuroscience experimental networks neural neurons signals temporal

More articles from Awards Funding:

nachricht Roentgen prize goes to Dr Eleftherios Goulielmakis
30.07.2015 | Munich-Centre for Advanced Photonics (MAP)

nachricht New ERC calls published under Horizon 2020
29.07.2015 | DLR Projektträger

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>