Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything—Bernstein Award 2014 for Raoul-Martin Memmesheimer

03.09.2014

Raoul-Martin Memmesheimer has been awarded one of the most attractive junior research prizes worldwide.

The physicist deals with the question of how nerve cells communicate by temporally precise electrical signals. The award was presented by State Secretary Dr. Georg Schütte from the Federal Ministry for Education and Research (BMBF) on September 3, 2014 during the Bernstein Conference in Göttingen. The Bernstein Award is endowed with up to € 1.25 million and enables outstanding young researchers to establish an independent research group at a German research institution. This year's award winner plans to establish his research group at the University of Göttingen.


Raoul-Martin Memmesheimer, laureate of the Bernstein Award 2014

Hans Günter Memmesheimer, 2014

How do groups of nerve cells process information? What is the role of signals that are timed on the precise millisecond? And how can a network of nerve cells learn to produce a specific rhythm of signals? "I am interested in the temporal characteristics of electrical signals, which neurons in biological neural networks use to communicate with each other," Memmesheimer says. The physicist’s tools are theoretical models. On their basis he wants to reconstruct and understand the complex dynamics of medium-sized nerve cell networks. His research takes place in close relation to experimental science: "We incorporate biological data in our network models," he describes, "and our theoretical models make concrete predictions, which are then investigated in real neural populations by experimental neuroscientists."

In his previous work, Memmesheimer for instance assessed the situation when several signals that arrive at a nerve cell at the same time can lead to a strong signal enhancement. The impact of this effect on the dynamics of a network is difficult to examine in living systems. Using his models, the neuroscientist revealed that the effect leads to characteristic rhythmic oscillations in the network. Subsequently, he learned: these rhythms actually exist in the hippocampus, the "memory center" of the brain.

With the investigation of neural networks — comprising some hundreds to thousands of neurons —Memmesheimer wants to contribute to closing the knowledge gap between the relatively well examined level of individual nerve cells and whole brain areas. On the one hand, this will help to understand the link between individual neurons and the entire brain’s activity. On the other hand, Memmesheimer’s findings facilitate artificial intelligence research. In the long term, he wants to develop highly biologically inspired algorithms that can recognize and predict temporal patterns. "This could be used to design even more sophisticated robots," says the brain scientist. He plans to pursue the questions of the brain’s temporal network dynamics at Göttingen University, where he wants to collaborate with scientists at the Bernstein Center and the Bernstein Focus Neurotechnology.

Raoul-Martin Memmesheimer studied theoretical physics at the universities of Kaiserslautern, Munich and Jena. Starting in 2004, he devoted himself to research, first as a graduate student and later as a postdoctoral fellow in the group of Marc Timme in the department of Theo Geisel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. He received his doctorate in 2007 and was honored with the Otto Hahn Medal of the Max Planck Society for his doctoral thesis. From 2008 to 2010 he worked as an independent Swartz Fellow at Harvard University (USA), where he collaborated with Haim Sompolinsky. Since April 2010 he is Assistant Professor in the Department for Neuroinformatics at the Donders Institute, Radboud University Nijmegen.

The Bernstein Award has been conferred for the ninth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:
Dr. Raoul-Martin Memmesheimer, Assistenzprofessor
Department for Neuroinformatics
Donders Institute for Brain, Cognition and Behavior
Radboud University Nijmegen
Heyendaalseweg 135
Nijmegen, Netherlands
Tel: +31 (0)24 365 2166
Email: r.memmesheimer@science.ru.nl

Weitere Informationen:

http://www.ru.nl/neuroinformatics/about_the_department/members/raoul-martin Webseite Raoul-Martin Memmesheimer
http://www.bernstein-conference.de Bernstein Konferenz
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.bfnt-goettingen.de Bernstein Fokus Neurotechnologie Göttingen
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Neuroscience experimental networks neural neurons signals temporal

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>