Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything—Bernstein Award 2014 for Raoul-Martin Memmesheimer

03.09.2014

Raoul-Martin Memmesheimer has been awarded one of the most attractive junior research prizes worldwide.

The physicist deals with the question of how nerve cells communicate by temporally precise electrical signals. The award was presented by State Secretary Dr. Georg Schütte from the Federal Ministry for Education and Research (BMBF) on September 3, 2014 during the Bernstein Conference in Göttingen. The Bernstein Award is endowed with up to € 1.25 million and enables outstanding young researchers to establish an independent research group at a German research institution. This year's award winner plans to establish his research group at the University of Göttingen.


Raoul-Martin Memmesheimer, laureate of the Bernstein Award 2014

Hans Günter Memmesheimer, 2014

How do groups of nerve cells process information? What is the role of signals that are timed on the precise millisecond? And how can a network of nerve cells learn to produce a specific rhythm of signals? "I am interested in the temporal characteristics of electrical signals, which neurons in biological neural networks use to communicate with each other," Memmesheimer says. The physicist’s tools are theoretical models. On their basis he wants to reconstruct and understand the complex dynamics of medium-sized nerve cell networks. His research takes place in close relation to experimental science: "We incorporate biological data in our network models," he describes, "and our theoretical models make concrete predictions, which are then investigated in real neural populations by experimental neuroscientists."

In his previous work, Memmesheimer for instance assessed the situation when several signals that arrive at a nerve cell at the same time can lead to a strong signal enhancement. The impact of this effect on the dynamics of a network is difficult to examine in living systems. Using his models, the neuroscientist revealed that the effect leads to characteristic rhythmic oscillations in the network. Subsequently, he learned: these rhythms actually exist in the hippocampus, the "memory center" of the brain.

With the investigation of neural networks — comprising some hundreds to thousands of neurons —Memmesheimer wants to contribute to closing the knowledge gap between the relatively well examined level of individual nerve cells and whole brain areas. On the one hand, this will help to understand the link between individual neurons and the entire brain’s activity. On the other hand, Memmesheimer’s findings facilitate artificial intelligence research. In the long term, he wants to develop highly biologically inspired algorithms that can recognize and predict temporal patterns. "This could be used to design even more sophisticated robots," says the brain scientist. He plans to pursue the questions of the brain’s temporal network dynamics at Göttingen University, where he wants to collaborate with scientists at the Bernstein Center and the Bernstein Focus Neurotechnology.

Raoul-Martin Memmesheimer studied theoretical physics at the universities of Kaiserslautern, Munich and Jena. Starting in 2004, he devoted himself to research, first as a graduate student and later as a postdoctoral fellow in the group of Marc Timme in the department of Theo Geisel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. He received his doctorate in 2007 and was honored with the Otto Hahn Medal of the Max Planck Society for his doctoral thesis. From 2008 to 2010 he worked as an independent Swartz Fellow at Harvard University (USA), where he collaborated with Haim Sompolinsky. Since April 2010 he is Assistant Professor in the Department for Neuroinformatics at the Donders Institute, Radboud University Nijmegen.

The Bernstein Award has been conferred for the ninth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:
Dr. Raoul-Martin Memmesheimer, Assistenzprofessor
Department for Neuroinformatics
Donders Institute for Brain, Cognition and Behavior
Radboud University Nijmegen
Heyendaalseweg 135
Nijmegen, Netherlands
Tel: +31 (0)24 365 2166
Email: r.memmesheimer@science.ru.nl

Weitere Informationen:

http://www.ru.nl/neuroinformatics/about_the_department/members/raoul-martin Webseite Raoul-Martin Memmesheimer
http://www.bernstein-conference.de Bernstein Konferenz
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.bfnt-goettingen.de Bernstein Fokus Neurotechnologie Göttingen
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Neuroscience experimental networks neural neurons signals temporal

More articles from Awards Funding:

nachricht “Next Generation of Science Journalists” Award: Applications now open
21.05.2015 | World Health Summit

nachricht Connecting science with society - EU boost for polar science
19.05.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>