Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything—Bernstein Award 2014 for Raoul-Martin Memmesheimer

03.09.2014

Raoul-Martin Memmesheimer has been awarded one of the most attractive junior research prizes worldwide.

The physicist deals with the question of how nerve cells communicate by temporally precise electrical signals. The award was presented by State Secretary Dr. Georg Schütte from the Federal Ministry for Education and Research (BMBF) on September 3, 2014 during the Bernstein Conference in Göttingen. The Bernstein Award is endowed with up to € 1.25 million and enables outstanding young researchers to establish an independent research group at a German research institution. This year's award winner plans to establish his research group at the University of Göttingen.


Raoul-Martin Memmesheimer, laureate of the Bernstein Award 2014

Hans Günter Memmesheimer, 2014

How do groups of nerve cells process information? What is the role of signals that are timed on the precise millisecond? And how can a network of nerve cells learn to produce a specific rhythm of signals? "I am interested in the temporal characteristics of electrical signals, which neurons in biological neural networks use to communicate with each other," Memmesheimer says. The physicist’s tools are theoretical models. On their basis he wants to reconstruct and understand the complex dynamics of medium-sized nerve cell networks. His research takes place in close relation to experimental science: "We incorporate biological data in our network models," he describes, "and our theoretical models make concrete predictions, which are then investigated in real neural populations by experimental neuroscientists."

In his previous work, Memmesheimer for instance assessed the situation when several signals that arrive at a nerve cell at the same time can lead to a strong signal enhancement. The impact of this effect on the dynamics of a network is difficult to examine in living systems. Using his models, the neuroscientist revealed that the effect leads to characteristic rhythmic oscillations in the network. Subsequently, he learned: these rhythms actually exist in the hippocampus, the "memory center" of the brain.

With the investigation of neural networks — comprising some hundreds to thousands of neurons —Memmesheimer wants to contribute to closing the knowledge gap between the relatively well examined level of individual nerve cells and whole brain areas. On the one hand, this will help to understand the link between individual neurons and the entire brain’s activity. On the other hand, Memmesheimer’s findings facilitate artificial intelligence research. In the long term, he wants to develop highly biologically inspired algorithms that can recognize and predict temporal patterns. "This could be used to design even more sophisticated robots," says the brain scientist. He plans to pursue the questions of the brain’s temporal network dynamics at Göttingen University, where he wants to collaborate with scientists at the Bernstein Center and the Bernstein Focus Neurotechnology.

Raoul-Martin Memmesheimer studied theoretical physics at the universities of Kaiserslautern, Munich and Jena. Starting in 2004, he devoted himself to research, first as a graduate student and later as a postdoctoral fellow in the group of Marc Timme in the department of Theo Geisel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. He received his doctorate in 2007 and was honored with the Otto Hahn Medal of the Max Planck Society for his doctoral thesis. From 2008 to 2010 he worked as an independent Swartz Fellow at Harvard University (USA), where he collaborated with Haim Sompolinsky. Since April 2010 he is Assistant Professor in the Department for Neuroinformatics at the Donders Institute, Radboud University Nijmegen.

The Bernstein Award has been conferred for the ninth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:
Dr. Raoul-Martin Memmesheimer, Assistenzprofessor
Department for Neuroinformatics
Donders Institute for Brain, Cognition and Behavior
Radboud University Nijmegen
Heyendaalseweg 135
Nijmegen, Netherlands
Tel: +31 (0)24 365 2166
Email: r.memmesheimer@science.ru.nl

Weitere Informationen:

http://www.ru.nl/neuroinformatics/about_the_department/members/raoul-martin Webseite Raoul-Martin Memmesheimer
http://www.bernstein-conference.de Bernstein Konferenz
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.bfnt-goettingen.de Bernstein Fokus Neurotechnologie Göttingen
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Neuroscience experimental networks neural neurons signals temporal

More articles from Awards Funding:

nachricht Heraeus Noblelight Gains Queen’s Award For Enterprise In The Innovation Category
22.04.2015 | Heraeus Noblelight GmbH

nachricht Thomas Wollert receives Eppendorf Award for Young European Investigators
20.04.2015 | Max-Planck-Institut für Biochemie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>