Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is everything—Bernstein Award 2014 for Raoul-Martin Memmesheimer

03.09.2014

Raoul-Martin Memmesheimer has been awarded one of the most attractive junior research prizes worldwide.

The physicist deals with the question of how nerve cells communicate by temporally precise electrical signals. The award was presented by State Secretary Dr. Georg Schütte from the Federal Ministry for Education and Research (BMBF) on September 3, 2014 during the Bernstein Conference in Göttingen. The Bernstein Award is endowed with up to € 1.25 million and enables outstanding young researchers to establish an independent research group at a German research institution. This year's award winner plans to establish his research group at the University of Göttingen.


Raoul-Martin Memmesheimer, laureate of the Bernstein Award 2014

Hans Günter Memmesheimer, 2014

How do groups of nerve cells process information? What is the role of signals that are timed on the precise millisecond? And how can a network of nerve cells learn to produce a specific rhythm of signals? "I am interested in the temporal characteristics of electrical signals, which neurons in biological neural networks use to communicate with each other," Memmesheimer says. The physicist’s tools are theoretical models. On their basis he wants to reconstruct and understand the complex dynamics of medium-sized nerve cell networks. His research takes place in close relation to experimental science: "We incorporate biological data in our network models," he describes, "and our theoretical models make concrete predictions, which are then investigated in real neural populations by experimental neuroscientists."

In his previous work, Memmesheimer for instance assessed the situation when several signals that arrive at a nerve cell at the same time can lead to a strong signal enhancement. The impact of this effect on the dynamics of a network is difficult to examine in living systems. Using his models, the neuroscientist revealed that the effect leads to characteristic rhythmic oscillations in the network. Subsequently, he learned: these rhythms actually exist in the hippocampus, the "memory center" of the brain.

With the investigation of neural networks — comprising some hundreds to thousands of neurons —Memmesheimer wants to contribute to closing the knowledge gap between the relatively well examined level of individual nerve cells and whole brain areas. On the one hand, this will help to understand the link between individual neurons and the entire brain’s activity. On the other hand, Memmesheimer’s findings facilitate artificial intelligence research. In the long term, he wants to develop highly biologically inspired algorithms that can recognize and predict temporal patterns. "This could be used to design even more sophisticated robots," says the brain scientist. He plans to pursue the questions of the brain’s temporal network dynamics at Göttingen University, where he wants to collaborate with scientists at the Bernstein Center and the Bernstein Focus Neurotechnology.

Raoul-Martin Memmesheimer studied theoretical physics at the universities of Kaiserslautern, Munich and Jena. Starting in 2004, he devoted himself to research, first as a graduate student and later as a postdoctoral fellow in the group of Marc Timme in the department of Theo Geisel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen. He received his doctorate in 2007 and was honored with the Otto Hahn Medal of the Max Planck Society for his doctoral thesis. From 2008 to 2010 he worked as an independent Swartz Fellow at Harvard University (USA), where he collaborated with Haim Sompolinsky. Since April 2010 he is Assistant Professor in the Department for Neuroinformatics at the Donders Institute, Radboud University Nijmegen.

The Bernstein Award has been conferred for the ninth time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Weitere Informationen erteilt Ihnen gerne:
Dr. Raoul-Martin Memmesheimer, Assistenzprofessor
Department for Neuroinformatics
Donders Institute for Brain, Cognition and Behavior
Radboud University Nijmegen
Heyendaalseweg 135
Nijmegen, Netherlands
Tel: +31 (0)24 365 2166
Email: r.memmesheimer@science.ru.nl

Weitere Informationen:

http://www.ru.nl/neuroinformatics/about_the_department/members/raoul-martin Webseite Raoul-Martin Memmesheimer
http://www.bernstein-conference.de Bernstein Konferenz
http://www.bccn-goettingen.de Bernstein Zentrum Göttingen
http://www.bfnt-goettingen.de Bernstein Fokus Neurotechnologie Göttingen
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein Neuroscience experimental networks neural neurons signals temporal

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>