Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What makes our brains so flexible - Bernstein Award 2012 for Tim Vogels

On 12 September, the Federal Ministry for Education and Research (BMBF) conferred this year's Bernstein Award for Computational Neuroscience.

With up to 1.25 million euros, it is one of the most highly remunerated award for young scientists worldwide. The award enables outstanding young researchers to establish their own group at a German research institution.

This year's awardee Tim Vogels will establish his research group at the Humboldt-Universität zu Berlin and the Bernstein Center Berlin. The award ceremony took place during the annual meeting of the Bernstein Network Computational Neuroscience in Munich.

How is it possible that, in the continuous stream of sensory information constantly bombarding us, we can flexibly direct our attention to one out of many information sources and neglect everything else? Just imagine a big orchestra, with almost a hundred musicians. In the middle of a piece, we can specifically focus our attention on the tuba, without letting ourselves be distracted by the first violinist’s virtuosic solo. And just a moment later, we can listen to the oboe.

This flexibility and the brain mechanisms on which it is based are the subjects of Tim Vogels' research. His tools are theoretical models. With their help, he is able to simulate neural networks in a computer and use them as virtual "guinea pigs" to formulate new hypotheses, which, in turn, can provide testable predictions for neurobiological experiments. He is interested both in slow changes that are typically associated with learning processes as well as in very short-term changes that allow us to quickly change our focus of attention.

Vogels’ previous research has already provided a basis for exploring these questions. Thanks to Vogels’ and others’ models, we know today that the neural networks in the brain maintain their sensitive balance by a well-tuned combination of excitatory and inhibitory stimuli. Vogels believes that this is the key to the flexible switching mechanisms in the brain. "I imagine that excitatory stimuli and their inhibitory counterparts interact with each other like guest and doorman," said Vogels. "The qualities of both will determine the decision of which guest – which environmental stimulus – is allowed to pass and which not. But also additional external factors may play a role, such as, metaphorically speaking, whether the establishment is full already, or how many friends the guest is bringing along."

Vogels will now pursue these and other questions in Berlin, in cooperation with local scientists of the Bernstein Center and the Humboldt-Universität, in particular Michael Brecht, Henning Sprekeler, Richard Kempter and Susanne Schreiber.

Tim Vogels initially studied physics at Technische Universität Berlin. After his pre-diploma, a Fulbright scholarship offered him the opportunity to continue his studies at Brandeis University in Boston, USA. He received his PhD in 2007 in the laboratory of Larry Abbott, a pioneer of computational neuroscience and the author of one of the most widely read textbooks on the subject. After a postdoctoral stay with Rafael Yuste at Columbia University, he became a Marie Curie Reintegration Fellow in 2010, in the laboratory of Wulfram Gerstner at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

The Bernstein Award is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. Namesake of the network is the German physiologist Julius Bernstein (1835-1917).


Tim Vogels
Laboratoire de Calcul Neuromimétique
École Polytechnique Fédérale, Station 15
1015 Lausanne
phone: +41 21 693 5265

Dr. Simone Cardoso de Oliveira | idw
Further information:

More articles from Awards Funding:

nachricht Understanding the fruit fly’s nose
24.11.2015 | Schweizerischer Nationalfonds SNF

nachricht Fighting Parkinson's disease: 1.25 million Euros for young Tübingen-based researcher
16.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>