Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes our brains so flexible - Bernstein Award 2012 for Tim Vogels

12.09.2012
On 12 September, the Federal Ministry for Education and Research (BMBF) conferred this year's Bernstein Award for Computational Neuroscience.

With up to 1.25 million euros, it is one of the most highly remunerated award for young scientists worldwide. The award enables outstanding young researchers to establish their own group at a German research institution.

This year's awardee Tim Vogels will establish his research group at the Humboldt-Universität zu Berlin and the Bernstein Center Berlin. The award ceremony took place during the annual meeting of the Bernstein Network Computational Neuroscience in Munich.

How is it possible that, in the continuous stream of sensory information constantly bombarding us, we can flexibly direct our attention to one out of many information sources and neglect everything else? Just imagine a big orchestra, with almost a hundred musicians. In the middle of a piece, we can specifically focus our attention on the tuba, without letting ourselves be distracted by the first violinist’s virtuosic solo. And just a moment later, we can listen to the oboe.

This flexibility and the brain mechanisms on which it is based are the subjects of Tim Vogels' research. His tools are theoretical models. With their help, he is able to simulate neural networks in a computer and use them as virtual "guinea pigs" to formulate new hypotheses, which, in turn, can provide testable predictions for neurobiological experiments. He is interested both in slow changes that are typically associated with learning processes as well as in very short-term changes that allow us to quickly change our focus of attention.

Vogels’ previous research has already provided a basis for exploring these questions. Thanks to Vogels’ and others’ models, we know today that the neural networks in the brain maintain their sensitive balance by a well-tuned combination of excitatory and inhibitory stimuli. Vogels believes that this is the key to the flexible switching mechanisms in the brain. "I imagine that excitatory stimuli and their inhibitory counterparts interact with each other like guest and doorman," said Vogels. "The qualities of both will determine the decision of which guest – which environmental stimulus – is allowed to pass and which not. But also additional external factors may play a role, such as, metaphorically speaking, whether the establishment is full already, or how many friends the guest is bringing along."

Vogels will now pursue these and other questions in Berlin, in cooperation with local scientists of the Bernstein Center and the Humboldt-Universität, in particular Michael Brecht, Henning Sprekeler, Richard Kempter and Susanne Schreiber.

Tim Vogels initially studied physics at Technische Universität Berlin. After his pre-diploma, a Fulbright scholarship offered him the opportunity to continue his studies at Brandeis University in Boston, USA. He received his PhD in 2007 in the laboratory of Larry Abbott, a pioneer of computational neuroscience and the author of one of the most widely read textbooks on the subject. After a postdoctoral stay with Rafael Yuste at Columbia University, he became a Marie Curie Reintegration Fellow in 2010, in the laboratory of Wulfram Gerstner at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

The Bernstein Award is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. Namesake of the network is the German physiologist Julius Bernstein (1835-1917).

Contact:

Tim Vogels
Laboratoire de Calcul Neuromimétique
École Polytechnique Fédérale, Station 15
1015 Lausanne
Switzerland
phone: +41 21 693 5265
email: tim.vogels@epfl.ch

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.epfl.ch
http://www.bccn-berlin.de/
http://www.hu-berlin.de/

More articles from Awards Funding:

nachricht 11 million Euros for research into magnetic field sensors for medical diagnostics
27.05.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Laser-based Production Process for High Efficiency Solar Cells Wins Award
11.05.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>