Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting fat with a single molecule


A single molecule may provide hope for millions of people, as researchers have combined two hormones formed in the digestive tract into one novel molecule.

This hormone combination acts on the receptors of insulin-stimulating hormones and is thus able to reduce blood sugar levels in patients suffering from obesity or type 2 diabetes.

In the coming years, this new therapeutic approach could help successfully treat both of these diseases, which the United Nations and the World Health Organization count among the greatest medical challenges facing modern society.

For their ground-breaking research, a team of chemists, pharmacologists and hormone and cancer researchers led by Matthias Tschöp, director of Helmholtz Zentrum München and professor at Technische Universität München (TUM), has received the 2014 Erwin Schrödinger Prize, an interdisciplinary research award that includes €50,000 in prize money.

This completely new single-molecule hormone combination leads to effective weight loss and improved blood sugar in animal models. The two hormones employed, GLP-1 and GIP, originate in the human digestive tract, where they control food intake and various metabolic processes. When sugar is ingested, the combined hormone the researchers have created causes an increased release of insulin; it also functions as an appetite suppressant and increases fat-burning processes.

The findings of the research team, which included Matthias Tschöp, Brian Finan, Kerstin Stemmer (all of the Institute for Diabetes and Obesity at the Helmholtz Zentrum München) and Richard DiMarchi (Indiana University, USA), were able to prove that metabolic regulation in the brain can be influenced via natural gut hormones. Should further scientific and clinical tests confirm this, then this approach will represent a breakthrough in diabetes prevention and therapy. This could result in the establishment of new therapeutic concepts for metabolic disorders.

However, not all hope hinges on one agent alone. In the meantime, the interdisciplinary researcher team has identified a series of combined agents. These include combinations of GLP-1 and glucagon as well as GLP-1-based conjugates that deliver steroid hormones such as oestrogen only to cells affecting metabolism, yet not to cells that could suffer from side effects.

The discovery and successful development of such new pharmacological compounds is especially important due to the fact that, despite the almost-epidemic spread of obesity and type-2 diabetes among the general populace in recent years, almost no new pharmacology-based therapeutic approach to treatment has yet been developed.

Although it will be some time until it can be employed as an approved therapy method, this new multifunctional agent approach would offer the possibility of designing personalised therapies to treat people suffering from type-2 diabetes.

“This award shows how important research in the field of metabolic disorders is to modern society,” says Jürgen Mlynek, President of the Helmholtz Association. “The mission of the Helmholtz Association is to find solutions to problems facing society through our basic research.” Mlynek will present the Erwin Schrödinger Prize on 18 September 2014 at the Helmholtz Annual Meeting in Berlin.

The award recipients:

Prof. Matthias Tschöp, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health and the Technische Universität München

Prof. Richard DiMarchi, Standiford H. Cox Distinguished Professor of Chemistry, Linda & Jack Gill Chair in Biomolecular Sciences, Department of Chemistry, Indiana University

Dr Kerstin Stemmer, Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

Dr Brian Finan, Division of Molecular Pharmacology, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

The Erwin Schrödinger Prize
Since 1999, the Helmholtz Association and the Stifterverband – Erwin Schrödinger Prize honours outstanding and innovative scientific and technological achievements realised on the frontiers of various disciplines in medicine, the natural sciences and engineering. Representatives from at least two disciplines have to have been involved in the research effort. The prize money is supplied by the Stifterverband one year and the Helmholtz Association the next. The prize winners can use the €50,000 in prize money as they please.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 36.000 employees in 18 research centres and an annual budget of approximately 3.8 billion euros, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Prof. Dr Angela Bittner
Press Officer Coummunications and Media
Tel.: +49 (30) 206 329-54

Helmholtz Association
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

Jan-Martin Wiarda | Helmholtz-Gemeinschaft

Further reports about: Diabetes Fighting Health Schrödinger blood disorders hormone metabolic natural sugar

More articles from Awards Funding:

nachricht Understanding the fruit fly’s nose
24.11.2015 | Schweizerischer Nationalfonds SNF

nachricht Fighting Parkinson's disease: 1.25 million Euros for young Tübingen-based researcher
16.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>