Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting fat with a single molecule


A single molecule may provide hope for millions of people, as researchers have combined two hormones formed in the digestive tract into one novel molecule.

This hormone combination acts on the receptors of insulin-stimulating hormones and is thus able to reduce blood sugar levels in patients suffering from obesity or type 2 diabetes.

In the coming years, this new therapeutic approach could help successfully treat both of these diseases, which the United Nations and the World Health Organization count among the greatest medical challenges facing modern society.

For their ground-breaking research, a team of chemists, pharmacologists and hormone and cancer researchers led by Matthias Tschöp, director of Helmholtz Zentrum München and professor at Technische Universität München (TUM), has received the 2014 Erwin Schrödinger Prize, an interdisciplinary research award that includes €50,000 in prize money.

This completely new single-molecule hormone combination leads to effective weight loss and improved blood sugar in animal models. The two hormones employed, GLP-1 and GIP, originate in the human digestive tract, where they control food intake and various metabolic processes. When sugar is ingested, the combined hormone the researchers have created causes an increased release of insulin; it also functions as an appetite suppressant and increases fat-burning processes.

The findings of the research team, which included Matthias Tschöp, Brian Finan, Kerstin Stemmer (all of the Institute for Diabetes and Obesity at the Helmholtz Zentrum München) and Richard DiMarchi (Indiana University, USA), were able to prove that metabolic regulation in the brain can be influenced via natural gut hormones. Should further scientific and clinical tests confirm this, then this approach will represent a breakthrough in diabetes prevention and therapy. This could result in the establishment of new therapeutic concepts for metabolic disorders.

However, not all hope hinges on one agent alone. In the meantime, the interdisciplinary researcher team has identified a series of combined agents. These include combinations of GLP-1 and glucagon as well as GLP-1-based conjugates that deliver steroid hormones such as oestrogen only to cells affecting metabolism, yet not to cells that could suffer from side effects.

The discovery and successful development of such new pharmacological compounds is especially important due to the fact that, despite the almost-epidemic spread of obesity and type-2 diabetes among the general populace in recent years, almost no new pharmacology-based therapeutic approach to treatment has yet been developed.

Although it will be some time until it can be employed as an approved therapy method, this new multifunctional agent approach would offer the possibility of designing personalised therapies to treat people suffering from type-2 diabetes.

“This award shows how important research in the field of metabolic disorders is to modern society,” says Jürgen Mlynek, President of the Helmholtz Association. “The mission of the Helmholtz Association is to find solutions to problems facing society through our basic research.” Mlynek will present the Erwin Schrödinger Prize on 18 September 2014 at the Helmholtz Annual Meeting in Berlin.

The award recipients:

Prof. Matthias Tschöp, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health and the Technische Universität München

Prof. Richard DiMarchi, Standiford H. Cox Distinguished Professor of Chemistry, Linda & Jack Gill Chair in Biomolecular Sciences, Department of Chemistry, Indiana University

Dr Kerstin Stemmer, Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

Dr Brian Finan, Division of Molecular Pharmacology, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

The Erwin Schrödinger Prize
Since 1999, the Helmholtz Association and the Stifterverband – Erwin Schrödinger Prize honours outstanding and innovative scientific and technological achievements realised on the frontiers of various disciplines in medicine, the natural sciences and engineering. Representatives from at least two disciplines have to have been involved in the research effort. The prize money is supplied by the Stifterverband one year and the Helmholtz Association the next. The prize winners can use the €50,000 in prize money as they please.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 36.000 employees in 18 research centres and an annual budget of approximately 3.8 billion euros, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Prof. Dr Angela Bittner
Press Officer Coummunications and Media
Tel.: +49 (30) 206 329-54

Helmholtz Association
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

Jan-Martin Wiarda | Helmholtz-Gemeinschaft

Further reports about: Diabetes Fighting Health Schrödinger blood disorders hormone metabolic natural sugar

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>