Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting fat with a single molecule

01.08.2014

A single molecule may provide hope for millions of people, as researchers have combined two hormones formed in the digestive tract into one novel molecule.

This hormone combination acts on the receptors of insulin-stimulating hormones and is thus able to reduce blood sugar levels in patients suffering from obesity or type 2 diabetes.

In the coming years, this new therapeutic approach could help successfully treat both of these diseases, which the United Nations and the World Health Organization count among the greatest medical challenges facing modern society.

For their ground-breaking research, a team of chemists, pharmacologists and hormone and cancer researchers led by Matthias Tschöp, director of Helmholtz Zentrum München and professor at Technische Universität München (TUM), has received the 2014 Erwin Schrödinger Prize, an interdisciplinary research award that includes €50,000 in prize money.

This completely new single-molecule hormone combination leads to effective weight loss and improved blood sugar in animal models. The two hormones employed, GLP-1 and GIP, originate in the human digestive tract, where they control food intake and various metabolic processes. When sugar is ingested, the combined hormone the researchers have created causes an increased release of insulin; it also functions as an appetite suppressant and increases fat-burning processes.

The findings of the research team, which included Matthias Tschöp, Brian Finan, Kerstin Stemmer (all of the Institute for Diabetes and Obesity at the Helmholtz Zentrum München) and Richard DiMarchi (Indiana University, USA), were able to prove that metabolic regulation in the brain can be influenced via natural gut hormones. Should further scientific and clinical tests confirm this, then this approach will represent a breakthrough in diabetes prevention and therapy. This could result in the establishment of new therapeutic concepts for metabolic disorders.

However, not all hope hinges on one agent alone. In the meantime, the interdisciplinary researcher team has identified a series of combined agents. These include combinations of GLP-1 and glucagon as well as GLP-1-based conjugates that deliver steroid hormones such as oestrogen only to cells affecting metabolism, yet not to cells that could suffer from side effects.

The discovery and successful development of such new pharmacological compounds is especially important due to the fact that, despite the almost-epidemic spread of obesity and type-2 diabetes among the general populace in recent years, almost no new pharmacology-based therapeutic approach to treatment has yet been developed.

Although it will be some time until it can be employed as an approved therapy method, this new multifunctional agent approach would offer the possibility of designing personalised therapies to treat people suffering from type-2 diabetes.

“This award shows how important research in the field of metabolic disorders is to modern society,” says Jürgen Mlynek, President of the Helmholtz Association. “The mission of the Helmholtz Association is to find solutions to problems facing society through our basic research.” Mlynek will present the Erwin Schrödinger Prize on 18 September 2014 at the Helmholtz Annual Meeting in Berlin.

The award recipients:

Prof. Matthias Tschöp, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health and the Technische Universität München

Prof. Richard DiMarchi, Standiford H. Cox Distinguished Professor of Chemistry, Linda & Jack Gill Chair in Biomolecular Sciences, Department of Chemistry, Indiana University

Dr Kerstin Stemmer, Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

Dr Brian Finan, Division of Molecular Pharmacology, Institute for Diabetes and Obesity, Helmholtz Zentrum München – German Research Center for Environmental Health

The Erwin Schrödinger Prize
Since 1999, the Helmholtz Association and the Stifterverband – Erwin Schrödinger Prize honours outstanding and innovative scientific and technological achievements realised on the frontiers of various disciplines in medicine, the natural sciences and engineering. Representatives from at least two disciplines have to have been involved in the research effort. The prize money is supplied by the Stifterverband one year and the Helmholtz Association the next. The prize winners can use the €50,000 in prize money as they please.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Space and Transport. With 36.000 employees in 18 research centres and an annual budget of approximately 3.8 billion euros, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Prof. Dr Angela Bittner
Press Officer Coummunications and Media
Tel.: +49 (30) 206 329-54
angela.bittner@helmholtz.de


Helmholtz Association
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin
Germany

Weitere Informationen:

http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Helmholtz-Gemeinschaft

Further reports about: Diabetes Fighting Health Schrödinger blood disorders hormone metabolic natural sugar

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>