Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Devices for organic high-capacity memories

06.08.2014

Kamal Asadi, a physicist at the Max Planck Institute for Polymer Research, receives the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation.

With this award, which is endowed with 1.65 million euros, the Humboldt Foundation singles out outstanding research talents with innovative research methods. Kamal Asadi is working at the MPI-P as a project leader, investigating electronic devices based on organic materials. The award enables him to develop an independent research group at the MPI-P with protected financing over the coming five years.


Dr. Kamal Asadi receives the Sofja Kovalevskaja Award

MPIP

Mainz/Bonn. Kamal Asadi from the Max Planck Institute for Polymer Research in Mainz receives one of the highest German scientific awards from the Alexander von Humboldt Foundation. He studies materials and physics of future organic memory devices.

“It is very exciting to step into an unexplored field thus far: organic multiferroics. And I’m really looking forward to actually changing the magnetization with the electric field,” Asadi says.

The hope for multiferroics
The Iranian born Kamal Asadi joined the group of Paul Blom at the MPI-P in 2013. Prior to that, he was a research scientist with the Dutch electronics group Philips. For many years, he has been conducting research on ferroelectric polymers, their materials science and device physics. His objective at MPI-P is develop organic multiferroics; composite materials that are simultaneously ferroelectric and ferromagnetics.

Ferroelectricity is the ability of certain dielectrics to demonstrate a non-zero polarization without an applied electric field, and is widely used in actuators, sensors and transducers. Ferroelectrics are also intriguing materials for memory applications due to their polarization bistability, which can be used as “0” and “1” states of the Boolean logic. Today’s memories like hard disk drives however are made of ferromagnetic materials. Ferromagnetism, a phenomenon widely known from permanent magnets, is based on the spin of the electrons and is observed mainly in metals.

Based on the classical Maxwell equations the scientific community was convinced that ferroelectricity and ferromagnetism are two mutually exclusive properties that cannot coexist in a single material. Nonetheless, in 1960s’ it was shown that there can be a weak interaction, or coupling, between ferroelectricity and ferromagnetism. Establishing the coupling between polarization and magnetization has been a challenge for experimental physicist for decades. Such material, called multi-ferroics, holds a promise for novel multi-functional data storage devices that can be written electrically and read magnetically.

Identification of multiferroic property in inorganic materials has led to worldwide research interest. Single phase multiferroics are rare, the coupling is weak and the electromagnetic response is only operative at very low temperatures. The alternatives to single phase are composites, and multi-layers of inorganic materials. The approaches have been promising, but there are still many scientific obstacles to overcome.

With the Sofja Kovalevskaja Award, Kamal Asadi is taking a totally different approach, using only organic materials. Developments of organic multiferroics that can be processed from solution are expected to lead to a revolution in novel switching devices, which is highly relevant for technology. It will be however a scientifically challenging task. For him, the first hurdle to overcome will be to build up his group at the MPI-P.

Award-winning and promoted Polymer Research
Once again a researcher of the MPI-P has succeeded in applying successfully for a conveyor price with long-term financing. During the past three years five ERC-Grants and as well as numerous participation in special fields of investigation (SFB) were donated. The MPI-P has developed with his infrastructure and his interdisciplinary adjustment to a centre of attraction for high talented researchers. This is a synergetic increasing effect which is based on wide recognition of the research achievements and the innovation potential of the institute.

Top Award for excellent research talents
The Sofja Kovalevskaja Award is one of the most valuable academic awards in Germany and allows the recipients to carry out research work under unique conditions: They may spend five years working on a research project at a university of their own choice in Germany and build up their own working groups – independently and largely untroubled by administrative constraints. The award amount may total up to 1.65 million euros per award winner. The objective is to integrate internationally sought-after research talents into collaborations with academics in Germany right at the beginning of their highly-promising careers, profiting both the research location and especially junior researchers in Germany. The award, which is granted for outstanding talent and a creative approach to research, is funded by the Federal Ministry of Education and Research.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2014 a total of 518 people were working at the MPI-P. The work force was made up of 121 scientists, 147 doctoral and diploma students, 76 scholarship holders, and 174 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/3986516/PM7_14

Natacha Bouvier | Max-Planck-Institut

More articles from Awards Funding:

nachricht “Next Generation of Science Journalists” Award: Applications now open
21.05.2015 | World Health Summit

nachricht Connecting science with society - EU boost for polar science
19.05.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>