Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Devices for organic high-capacity memories

06.08.2014

Kamal Asadi, a physicist at the Max Planck Institute for Polymer Research, receives the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation.

With this award, which is endowed with 1.65 million euros, the Humboldt Foundation singles out outstanding research talents with innovative research methods. Kamal Asadi is working at the MPI-P as a project leader, investigating electronic devices based on organic materials. The award enables him to develop an independent research group at the MPI-P with protected financing over the coming five years.


Dr. Kamal Asadi receives the Sofja Kovalevskaja Award

MPIP

Mainz/Bonn. Kamal Asadi from the Max Planck Institute for Polymer Research in Mainz receives one of the highest German scientific awards from the Alexander von Humboldt Foundation. He studies materials and physics of future organic memory devices.

“It is very exciting to step into an unexplored field thus far: organic multiferroics. And I’m really looking forward to actually changing the magnetization with the electric field,” Asadi says.

The hope for multiferroics
The Iranian born Kamal Asadi joined the group of Paul Blom at the MPI-P in 2013. Prior to that, he was a research scientist with the Dutch electronics group Philips. For many years, he has been conducting research on ferroelectric polymers, their materials science and device physics. His objective at MPI-P is develop organic multiferroics; composite materials that are simultaneously ferroelectric and ferromagnetics.

Ferroelectricity is the ability of certain dielectrics to demonstrate a non-zero polarization without an applied electric field, and is widely used in actuators, sensors and transducers. Ferroelectrics are also intriguing materials for memory applications due to their polarization bistability, which can be used as “0” and “1” states of the Boolean logic. Today’s memories like hard disk drives however are made of ferromagnetic materials. Ferromagnetism, a phenomenon widely known from permanent magnets, is based on the spin of the electrons and is observed mainly in metals.

Based on the classical Maxwell equations the scientific community was convinced that ferroelectricity and ferromagnetism are two mutually exclusive properties that cannot coexist in a single material. Nonetheless, in 1960s’ it was shown that there can be a weak interaction, or coupling, between ferroelectricity and ferromagnetism. Establishing the coupling between polarization and magnetization has been a challenge for experimental physicist for decades. Such material, called multi-ferroics, holds a promise for novel multi-functional data storage devices that can be written electrically and read magnetically.

Identification of multiferroic property in inorganic materials has led to worldwide research interest. Single phase multiferroics are rare, the coupling is weak and the electromagnetic response is only operative at very low temperatures. The alternatives to single phase are composites, and multi-layers of inorganic materials. The approaches have been promising, but there are still many scientific obstacles to overcome.

With the Sofja Kovalevskaja Award, Kamal Asadi is taking a totally different approach, using only organic materials. Developments of organic multiferroics that can be processed from solution are expected to lead to a revolution in novel switching devices, which is highly relevant for technology. It will be however a scientifically challenging task. For him, the first hurdle to overcome will be to build up his group at the MPI-P.

Award-winning and promoted Polymer Research
Once again a researcher of the MPI-P has succeeded in applying successfully for a conveyor price with long-term financing. During the past three years five ERC-Grants and as well as numerous participation in special fields of investigation (SFB) were donated. The MPI-P has developed with his infrastructure and his interdisciplinary adjustment to a centre of attraction for high talented researchers. This is a synergetic increasing effect which is based on wide recognition of the research achievements and the innovation potential of the institute.

Top Award for excellent research talents
The Sofja Kovalevskaja Award is one of the most valuable academic awards in Germany and allows the recipients to carry out research work under unique conditions: They may spend five years working on a research project at a university of their own choice in Germany and build up their own working groups – independently and largely untroubled by administrative constraints. The award amount may total up to 1.65 million euros per award winner. The objective is to integrate internationally sought-after research talents into collaborations with academics in Germany right at the beginning of their highly-promising careers, profiting both the research location and especially junior researchers in Germany. The award, which is granted for outstanding talent and a creative approach to research, is funded by the Federal Ministry of Education and Research.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2014 a total of 518 people were working at the MPI-P. The work force was made up of 121 scientists, 147 doctoral and diploma students, 76 scholarship holders, and 174 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/3986516/PM7_14

Natacha Bouvier | Max-Planck-Institut

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>