Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BMBF funds translational project to improve radiotherapy

10.05.2017

The German Federal Ministry of Education and Research (BMBF) will be supplying the ZiSStrans research consortium with around four million euros over the next five years. The joint project, which is being coordinated at the Helmholtz Zentrum München, has the objective of investigating new possibilities to personalize radiotherapy of head and neck cancer.

The term ‘head-neck cancer’ is used to refer to various tumor types that occur in this part of the body, for example, cancer of the oral cavity or pharynx. Radiotherapy, either alone or combined with surgery and/or chemotherapy, is a central element in the complex treatment strategies.


Irradiation planning of a head-neck tumor

Source: Klinikum der Universität München

Difficulties arise, however, if the tumors demonstrate so-called radiation resistance and do not respond to the treatment as desired, or if undesirable effects occur that make it necessary to stop the treatment.

“This is where the ZiSStrans project comes in,” explains coordinator Prof. Dr. Horst Zitzelsberger, head of the Radiation Cytogenetics Research Unit at the Helmholtz Zentrum München. “Our objective is to identify molecular signaling pathways and target structures for the radiation response and to examine them in patient studies.”

In this field, this step is called translation, which also explains the project's name. Because ZiSStrans is the translational follow-up project of “Targets and signaling pathways of radiation hypersensitivity and resistance” or ZiSS for short, which ran from 2012 to 2017.
http://www.bfs.de/EN/bfs/science-research/third-party-funded-research/ziss.html;...

The researchers particularly hope to gain new insights by comparing tumor and normal tissue. “The radiosensitivity of the surrounding healthy tissue limits the radiotherapy intensity which can be applied, because this is where undesirable effects can occur,” Zitzelsberger explains.

By understanding the signaling networks in the tumor and normal tissue, the researchers want to explore how the radiation response and resistance can be selectively influenced and how the treatment success can be improved by molecular substances.

A further focus of the research consortium is on personalized treatment. The use of new markers should make it possible to predict whether or not the particular patient will be able to profit from the planned action, even before the first radiation treatment. “In the future, we want to be able to say with great certainty that a particular patient is either a ‘responder’ or a ‘non-responder’, which means if the patient will respond to the treatment or if other options must be considered in advance,” says coordinator Zitzelsberger.

Of the total of four million euros that the BMBF will be providing to the project between 2017 and 2022, around 800,000 will be allocated to the Helmholtz Zentrum München. In addition to Research Unit Head Zitzelsberger, the groups of Dr. Julia Heß and Dr. Kristian Unger are also involved. Furthermore, the following partners are participating in the project:

• University Hospital of Munich (LMU, Department for Radiotherapy and Radiation Oncology, Prof. Lauber, Prof. Belka)
• Essen University Hospital (Institute of Cell Biology, Prof. Jendrossek, PD Dr. Klein)
• Medical Center – University of Freiburg (Center for Diagnostic and Therapeutic Radiology, Prof. Henke)
• Charité University Hospital Berlin (Institute of Pathology, Prof. Blüthgen)
• German Federal Office for Radiation Protection Neuherberg (Biological Radiation Effects, Dr. Hornhardt, Dr. Gomolka)
• Clinical cooperation group "Personalized radiotherapy of head-neck tumors" involving the Department for Radiotherapy and Radiation Oncology, University Hospital of Munich (LMU) and the Radiation Cytogenetics Research Unit, Helmholtz Zentrum München

Further information

Background:
Almost one year ago, researchers in the consortium had already developed a new method of predicting disease progression of certain brain tumors after standard treatment. In the journal ‘Oncotarget’, they were able to show that four miRNAs can provide the crucial indications. A direct application for a corresponding patent has already been made: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

In the thyroid gland, the researchers have also been able to identify markers for tumors induced by radiation: https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas...

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Radiation Cytogenetics (ZYTO) investigates radiation-induced chromosome and DNA damage in cell systems and human tumours. The focus is on clarifying the mechanisms associated with radiation-induced carcinogenesis and radiation sensitivity of tumour cells. The aim of this research is to find biomarkers associated with radiation-induced tumours in order to develop personalized radiation therapy for the stratification of patients. ZYTO is a part of the Department of Radiation Sciences (DRS). http://www.helmholtz-muenchen.de/zyto

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Horst Zitzelsberger, Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Radiation Cytogenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3421, E-mail: Zitzelsberger@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMBF Cytogenetics Environmental Health Radiation radiotherapy tumors

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>