Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Award-winning research on cell metabolism


A better understanding of the way metabolism works may in the long run mean make it easier to find new medicines for diseases such as diabetes. By combining different methods taken from physics, the researcher Anna-Karin Gustavsson has been able to study metabolism in individual cells.

The objective of these research studies is to see what cells do when there are changes in their environment.

Anna-Karin Gustavsson, the Department of Physics, University of Gothenburg

Photo: Johan Wingborg/University of Gothenburg.

A completely new discovery
Anna-Karin Gustavsson has created a specially designed microfluidic chip containing channels through which different solutions are able to flow. With the aid of optical tweezers, a device that traps a laser beam, she captures individual cells for placing at the point where the channels intersect. This intersection between the channels is where the cells' immediate environment can change very rapidly.

“By using a microscope, I have been able to monitor what the cells do when there are changes in their environment. I discovered that the concentration of molecules in the metabolism of individual cells while these are breaking down sugars could, under specific conditions, be made to rock; i.e. oscillate.”

Up to this moment, it had never been possible to demonstrate the monitoring of oscillations in individual cells, despite there being many publications in high-ranking journals.

“The ability to confirm that this takes place in individual, isolated cells is something new,” says Anna-Karin Gustavsson, who together with her colleagues has also produced a mathematical model for the behaviour of the cells during glycolysis, the process whereby sugars are broken down in our cells to create energy.

May influence the designing of new medicines
In both human cells and yeast cells, which are the focus of Anna-Karin's studies, glucose is converted so as to create available energy. These studies may provide a deeper understanding of glycolysis, the way it works and the reason why oscillations occur.

In the past, these oscillations could only be seen in the form of millions of cells gathered in tight clusters and interacting with each other in order to coordinate their oscillations. Studying a population of millions of cells at the same time and on a collective basis produces only a mean value of the behaviour of all the cells, but looking at the cells one by one makes it possible to see that they behave very differently.

“Studying their heterogeneity is important for understanding the way the biological processes work, and provides the knowledge needed for producing new medicines. These glycolytic oscillations in particular are a most interesting area for further study since they may have a connection to the way in which the body secretes insulin, and also to diabetes in cases where this secretion no longer works the way it should.”

When Anna-Karin Gustavsson's discovery was published in the FEBS Journal, her article was judged to be the best in the Young Scientists category, and she was awarded the FEBS Journal Prize for Young Scientists. Since then, she has mapped the way in which the oscillations arise and under which conditions they do so, and the way in which the individual cells interact with each other so as to synchronise their oscillations.

This research has been conducted in Gothenburg and Stellenbosch, South Africa.

Title of thesis: Glycolytic oscillations in individual yeast cells
Supervisor: Dr. Mattias Goksör
Assistant supervisor: Dr. Caroline Beck Adiels

Link to thesis:

Anna-Karin Gustavsson, the Department of Physics, University of Gothenburg, (+46) 702-604488

Photo: Johan Wingborg

Weitere Informationen:

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>