Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning research on cell metabolism

09.02.2015

A better understanding of the way metabolism works may in the long run mean make it easier to find new medicines for diseases such as diabetes. By combining different methods taken from physics, the researcher Anna-Karin Gustavsson has been able to study metabolism in individual cells.

The objective of these research studies is to see what cells do when there are changes in their environment.


Anna-Karin Gustavsson, the Department of Physics, University of Gothenburg

Photo: Johan Wingborg/University of Gothenburg.

A completely new discovery
Anna-Karin Gustavsson has created a specially designed microfluidic chip containing channels through which different solutions are able to flow. With the aid of optical tweezers, a device that traps a laser beam, she captures individual cells for placing at the point where the channels intersect. This intersection between the channels is where the cells' immediate environment can change very rapidly.

“By using a microscope, I have been able to monitor what the cells do when there are changes in their environment. I discovered that the concentration of molecules in the metabolism of individual cells while these are breaking down sugars could, under specific conditions, be made to rock; i.e. oscillate.”

Up to this moment, it had never been possible to demonstrate the monitoring of oscillations in individual cells, despite there being many publications in high-ranking journals.

“The ability to confirm that this takes place in individual, isolated cells is something new,” says Anna-Karin Gustavsson, who together with her colleagues has also produced a mathematical model for the behaviour of the cells during glycolysis, the process whereby sugars are broken down in our cells to create energy.

May influence the designing of new medicines
In both human cells and yeast cells, which are the focus of Anna-Karin's studies, glucose is converted so as to create available energy. These studies may provide a deeper understanding of glycolysis, the way it works and the reason why oscillations occur.

In the past, these oscillations could only be seen in the form of millions of cells gathered in tight clusters and interacting with each other in order to coordinate their oscillations. Studying a population of millions of cells at the same time and on a collective basis produces only a mean value of the behaviour of all the cells, but looking at the cells one by one makes it possible to see that they behave very differently.

“Studying their heterogeneity is important for understanding the way the biological processes work, and provides the knowledge needed for producing new medicines. These glycolytic oscillations in particular are a most interesting area for further study since they may have a connection to the way in which the body secretes insulin, and also to diabetes in cases where this secretion no longer works the way it should.”

When Anna-Karin Gustavsson's discovery was published in the FEBS Journal, her article was judged to be the best in the Young Scientists category, and she was awarded the FEBS Journal Prize for Young Scientists. Since then, she has mapped the way in which the oscillations arise and under which conditions they do so, and the way in which the individual cells interact with each other so as to synchronise their oscillations.

This research has been conducted in Gothenburg and Stellenbosch, South Africa.

Title of thesis: Glycolytic oscillations in individual yeast cells
Supervisor: Dr. Mattias Goksör
Assistant supervisor: Dr. Caroline Beck Adiels

Link to thesis: http://hdl.handle.net/2077/37367

Contact:
Anna-Karin Gustavsson, the Department of Physics, University of Gothenburg
anna-karin.gustavsson@physics.gu.se, (+46) 702-604488

Photo: Johan Wingborg

Weitere Informationen:

http://science.gu.se/english/News/News_detail//award-winning-research-on-cell-me...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>