Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s fastest car + UWE

23.10.2008
The BLOODHOUND project Launch at Science Museum, London

The University of the West of England (UWE Bristol) is taking centre stage in the development of Bloodhound SSC, a car designed to take the land speed record to over 1000mph, launching at the Science Museum in London today.


UWE is a founder partner supporting the Bloodhound project which is lead by Richard Noble, a previous world land speed record holder.

Engineers from UWE have produced the scale model for BLOODHOUND SSC, a car that aims not just to break the current land speed record but to achieve an astounding land speed of 1000 mph.

... more about:
»Bloodhound »Design »SSC »Speed »Speed Record

The Bloodhound Project launches today at the Science Museum when the scale wooden and plastic model, built by the team of UWE Engineers and technicians will be revealed. The Engineers have taken the CAD designs from the Bloodhound Design team, and used rapid prototyping and CNC routers to realise the first scale model of the car.

The Bloodhound Design team, lead by John Piper (JCB Dieselmax Chief Designer), has been working with UWE engineers and technicians in secret since January 2008, using the specialist facilities at UWE to help realise the formative stages of the project.

John Lanham, Head of Design and Engineering at UWE’s Faculty of Environment and Technology, said, “UWE will also lead the Bloodhound Project Higher Education engagement opportunities nationwide. We will be integrating the Bloodhound Project into the Engineering curriculum and provide research opportunities, run design competitions and organise public engagement events.

“The Bloodhound Project has been an inspiration to all of the technicians and staff involved so far and we’re thrilled to be an integral part of one of the biggest and most exciting engineering projects happening in the world today. Our students will benefit enormously from having such an iconic project happening on their doorstep.

“The beauty of Bloodhound is the openness of the project. So many engineering projects in the real world are subject to extreme confidentiality for obvious commercial reasons but Bloodhound’s development will be seen by millions as it evolves with live coverage on the web (www.BloodhoundSSC.com). This very openness of Bloodhound’s development presents unprecedented opportunities for us to prepare students for the real world.”

The early construction of the initial full scale mock-up of Bloodhound SSC, measuring over 12.8 metres, will also take place on UWE’s Frenchay Campus. The actual Bloodhound SSC car will be constructed at a specially designed visitors centre.

The design for the building adaptation has been lead by UWE architect James Burch and funding is under discussion with the South West Regional Development Agency. James has worked on many iconic design projects including the Gorilla Kingdom at London Zoo. He describes the design, “We will be working with an existing building measuring around 1,500 square metres and creating a suitable space that will include a workshop, design rooms, a viewing gallery and exhibition space. The majority of the space will be given over to the actual workshop as the car will need to take centre stage. The Visitors Centre will provide a space for schoolchildren and enthusiasts to explore engineering and will make almost theatrical the experience of seeing the vehicle grow into being.”

The full scale mock-up will be a breathtaking experience planned to be integrated in a schools outreach programme involving schools all over the UK. The full size model will mirror the actual car and is integral to project success.

Bloodhound will be 12.8 metres in length, 6.4 metres wide, weighing in at 6.4 tonnes. The wheels will need to survive a 10500 rpm proof test and the car will be powered by a Eurojet EJ200 delivering 20,000lbs thrust and a Falcon hybrid rocket delivering 27,000lbs thrust. The design speed is 1050 mph.

UWE Vice Chancellor, Steve West, explains why the University has decided to support this project, he said, “We share the vision for advancing Engineering in the UK and by welcoming the Bloodhound team onto our campus we aim to inspire our students and school pupils to get involved. We are proud that UWE is leading the Higher Education programme that will be developed alongside Bloodhound. There are huge engineering challenges that face us globally as we all strive towards a conversion to low carbon living.

“We are going to need a surge of interest to the STEM subjects in universities nationwide to help us meet a growing demand for engineering and technological expertise. A project like Bloodhound, will, we believe, inspire a new generation to visualise the potential of engineering and we want to invite this generation to take part in this exciting adventure to help shore up a sustainable future for us all.”

Richard Noble describes the rationale for the project, he said, “We have held the World Land Speed Record for the last 25 years and we still hold it. There is early competition developing and we have to defend our record. But our number one objective in this project is to create a national surge in interest in Engineering and STEM subjects. We have discovered during the Bloodhound SSC research programme that the education objective generates huge interest. During the early days of the ThrustSSC project the website ran 59 million accesses – even today the site runs 2,000 pages per day. We can share the Bloodhound SSC technology openly because there are minimal design restrictions for the Land Speed Record vehicles and therefore competitive cars tend to be completely different. Thus an advantage for one competitor is not necessarily of value to another. Besides, in this sport because the challenge is simply so tough, that we all try to help each other.

In short, we are responding to a national need for a high technology programme to advance engineering capability in Britain. The project is wholly dependent on innovative application of very advanced research and technology. We are confident that Bloodhound SSC will stimulate a national interest in engineering technology in schools.”

The Bloodhound Project launches today at the Science Museum in London at 08.00. The project is expected to run for three years. With the difficulties of concurrent funding, the plan is to complete the car during 2009 and achieve the 1000 mph record by 2011. Because of the 40% increase in speed and the lack of experience at these high Mach numbers the car may have to be redesigned and rebuilt a number of times in order to achieve the final target.

Jane Kelly | alfa
Further information:
http://www.uwe.ac.uk
http://info.uwe.ac.uk/news/UWENews/article.asp?item=1371&year=2008
http://www.uwe.ac.uk/aboutUWE/bloodhound/gallery.shtml

Further reports about: Bloodhound Design SSC Speed Speed Record

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>