Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart as skin: intelligent corrosion protection

03.05.2012
Annually the economic loss due to corrosion amounts to ca. 80 billion Euro in Germany1. Affecting various kinds of materials, there is a common interest to create protective systems that can withstand this phenomenon. In steel industry this is usually achieved by galvanizing with zinc, which dissolves rather than iron when it is in contact with corrosive media. The group of Dr. Michael Rohwerder aims at further optimising the system. Thus a more reliable and efficient protection is ensured.

Research in corrosion protection has been increasing since the 18th century, especially with respect to steel.



The microcapsules filled with corrosion
inhibitor are released when the steel
sheet is cut. Quelle: MPIE

Galvanizing is a common protective means, but during the production process initial corrosive spots are formed right at the cut-edge. The idea that is developed at the MPIE is to incorporate microcapsules, which are filled with corrosion inhibitor, e.g. polyphosphomolybdate, into the zinc coating. As soon as the steel sheet is cut, the zinc starts to corrode and dissolve.

This is the starting shot for the intelligent, second protective system: the capsules are released from the zinc onto the steel and smeared along the surface by the cutting device. The inhibitor can be released and thus protects the steel surface.

Modification with thiols facilitates the integration into the zinc

“This is an intelligent protective system that automatically realises when and where corrosion happens, becomes active and stops again when the respective spot is healed”, explains Dr. Rohwerder, group leader in the department of Interface Chemistry and Surface Engineering. It works like a scratch in the skin: it is detected, healed and the initial status is restored.

For preparing these smart coatings, three work steps must be performed: loading of the silica microcapsules with the inhibitor, sealing them to avoid premature leaching and finally incorporating the capsules into the zinc layer.

The sealing procedure, however, has of course an immense influence on the release kinetics. By rinsing with water glass solution, the release is steady and slow. The incorporation into the zinc layer is the most difficult part. Unmodified, the hydrophilic particles are repulsed by the zinc and only adsorb on the surface.

Tabrisur Rahman Khan, a PhD student from Bangladesh, has now fixed the problem. He modifies the particles with zinc affine functional groups, such as thiols, which make the solvation feasible.

Max-Planck & Fraunhofer collaboration on intelligent corrosion coatings

Everything solved? Well, not completely. For efficient protection, a higher loading of the pores with the inhibitor must be realised. This is the focus of current research. Additionally, the concept of intelligent corrosion coatings has been expanded to systems with polymer coatings. The joint project ASKORR (Aktive Schichten für den Korrosionsschutz, active coatings for corrosion protection) is a successful collaboration between the Max-Planck and the Fraunhofer Society in this field.

Two Max-Planck and two Fraunhofer Institutes are sharing their competences with respect to nanocomposite coatings, agent containers, zinc coatings and the analysis of effective mechanisms in order to improve the protective coatings. “It is a huge challenge, but present results look very promising”, states Rohwerder.

1 Gesellschaft für Korrosionsforschung

Yasmin A. Salem, M.A.

Public Relations
Max-Planck-Institut für Eisenforschung GmbH
Max-Planck-Str. 1
40237 Düsseldorf
Germany
phone: +49 (0)211 6792 722
fax: +49 (0)211 6792 218

Yasmin A. Salem | MPIE
Further information:
http://www.mpie.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>