Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Car Parts From Coconuts

07.01.2009
A team of Baylor University researchers who have identified a variety of low-cost products that can be manufactured from coconuts in poor coastal regions have now developed a way to use coconut husks in automotive interiors.

The Baylor researchers have developed a technology to use coconut fiber as a replacement for synthetic polyester fibers in compression molded composites. Specifically, their goal is to use the coconut fibers to make trunk liners, floorboards and interior door covers on cars, marking the first time coconut fibers have been used in these applications.

Since coconuts are an abundant, renewable resource in all countries near the equator, Baylor's team is working to create multiple products that could be manufactured from coconuts in those regions using simple and inexpensive technology. With an estimated 11 million coconut farmers in the world making an average annual income of $500, the Baylor researchers hope to triple the coconut farmer’s annual income by increasing the market price for each coconut to 30 cents, which could have a substantial effect on the farmer’s quality of life.

“What we hope to do is create a viable market for the poor coconut farmer,” said Dr. Walter Bradley, Distinguished Professor of Engineering at Baylor, who is leading the project. “Our goal is to create millions of pounds of demand at a much better price.”

The Baylor researchers said the mechanical properties of coconut fibers are just as good, if not better, than synthetic and polyester fibers when using them in automotive parts. Bradley said the coconut fibers are less expensive than other fibers and better for the environment because the coconut husks would have otherwise been thrown away. Coconuts also do not burn very well or give off toxic fumes, which is crucial in passing tests required for actual application in commercial automotive parts.

Bradley said they are working closely with a Texas-based fiber processing company that is a supplier of unwoven fiber mats to four major automotive companies.

The Baylor researchers are now putting the automotive parts that use coconut fiber through a series of certification tests to see if the fiber meets the necessary safety performance specifications.

About Baylor:

Chartered in 1845 by the Republic of Texas, Baylor University is the oldest, continually operating university in the state. Baylor’s 735-acre campus in Waco, Texas, is home to more than 14,500 students from all 50 states and 70 countries, who can choose from more than 140 undergraduate and 100 graduate programs through 11 academic units. Baylor, a private Christian university and a nationally ranked liberal arts institution, is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with “high research activity.” This blends with Baylor’s international reputation for educational excellence built upon the faculty’s commitment to teaching, scholarship and interdisciplinary research to produce outstanding graduates.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>