Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Car Parts From Coconuts

07.01.2009
A team of Baylor University researchers who have identified a variety of low-cost products that can be manufactured from coconuts in poor coastal regions have now developed a way to use coconut husks in automotive interiors.

The Baylor researchers have developed a technology to use coconut fiber as a replacement for synthetic polyester fibers in compression molded composites. Specifically, their goal is to use the coconut fibers to make trunk liners, floorboards and interior door covers on cars, marking the first time coconut fibers have been used in these applications.

Since coconuts are an abundant, renewable resource in all countries near the equator, Baylor's team is working to create multiple products that could be manufactured from coconuts in those regions using simple and inexpensive technology. With an estimated 11 million coconut farmers in the world making an average annual income of $500, the Baylor researchers hope to triple the coconut farmer’s annual income by increasing the market price for each coconut to 30 cents, which could have a substantial effect on the farmer’s quality of life.

“What we hope to do is create a viable market for the poor coconut farmer,” said Dr. Walter Bradley, Distinguished Professor of Engineering at Baylor, who is leading the project. “Our goal is to create millions of pounds of demand at a much better price.”

The Baylor researchers said the mechanical properties of coconut fibers are just as good, if not better, than synthetic and polyester fibers when using them in automotive parts. Bradley said the coconut fibers are less expensive than other fibers and better for the environment because the coconut husks would have otherwise been thrown away. Coconuts also do not burn very well or give off toxic fumes, which is crucial in passing tests required for actual application in commercial automotive parts.

Bradley said they are working closely with a Texas-based fiber processing company that is a supplier of unwoven fiber mats to four major automotive companies.

The Baylor researchers are now putting the automotive parts that use coconut fiber through a series of certification tests to see if the fiber meets the necessary safety performance specifications.

About Baylor:

Chartered in 1845 by the Republic of Texas, Baylor University is the oldest, continually operating university in the state. Baylor’s 735-acre campus in Waco, Texas, is home to more than 14,500 students from all 50 states and 70 countries, who can choose from more than 140 undergraduate and 100 graduate programs through 11 academic units. Baylor, a private Christian university and a nationally ranked liberal arts institution, is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with “high research activity.” This blends with Baylor’s international reputation for educational excellence built upon the faculty’s commitment to teaching, scholarship and interdisciplinary research to produce outstanding graduates.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Automotive Engineering:

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>