Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly realistic driving simulator helps develop safer cars

04.04.2006
EUREKA project E! 1493 ULTIMATE has led to the development of a highly sophisticated simulator to improve car design and increase road safety in Europe using novel mechanical, display and software technology.

Simulators can make a major contribution to vehicle design and the study of human driving factors. However, they have been of more limited value for road vehicles due to the large linear motion needed (for e.g. when turning corners or during braking). As a result, the cost of suitable car simulators had been prohibitive.

Dutch, French and UK partners in the ULTIMATE project combined expertise in car design, motion platforms, displays and software to develop a highly cost-effective new simulator design that will allow a more detailed study of human behaviour when driving road vehicles, as well as the trial and development of new aids to improve performance and safety for vehicle users. The ULTIMATE simulator is compact and modular with a choice of conventional screen or head-mounted virtual reality displays supplying information on car performance and visibility - from the very beginning of vehicle development.

Overcoming mechanical constraints

New design and materials were essential to the project. “We needed to overcome the mechanical constraints of earlier simulators to be able to accelerate for a sufficient duration of 1 to 3 sec at 0.1g for example in X and Y axes with a high payload,” explains ULTIMATE project leader Dr Andras Kemeny, head of the Renault Technical Centre for Simulation and Renault’s expert in driving simulation and virtual reality. ULTIMATE took an innovative and particular cost-effective approach, resulting in a low overall weight for the simulator – around 3.5 tonnes. It uses a compact six-axis platform mounted on a second large linear motion bi-directional frame that allows peak accelerations of up to 7 m/s2 in X and Y directions.

Advanced virtual display

An on-board 150° cylindrical screen provides a lightweight display that supplies full motion performance. Alternatively, when physical component integration is impossible or impractical, the driver can use a high-performance, head-mounted display (HMD) that makes it possible to drive in a fully virtual cockpit. The display systems were developed by UK partner SEOS; the HMD in the EUREKA E! 1924 CARDS project. “SEOS was involved in the project from the beginning and contacted Renault for information about track simulation. We became involved as an original partner pulled out. We asked for modifications and encouraged other partners to join. A second EUREKA project – MOVES – will extend the work of ULTIMATE to optimise the software and the motion algorithms. This new project is being led by our ULTIMATE project partner CNRS (the French National Centre for Scientific Research),” says Dr Kemeny. “EUREKA played a crucial role both in providing access to funding and in offering a coherent legal structure for co-operation over the research period. Without such a structure I believe we could not have done this project.”

Catherine Shiels | alfa
Further information:
http://www.eureka.be

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>