Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly realistic driving simulator helps develop safer cars

04.04.2006
EUREKA project E! 1493 ULTIMATE has led to the development of a highly sophisticated simulator to improve car design and increase road safety in Europe using novel mechanical, display and software technology.

Simulators can make a major contribution to vehicle design and the study of human driving factors. However, they have been of more limited value for road vehicles due to the large linear motion needed (for e.g. when turning corners or during braking). As a result, the cost of suitable car simulators had been prohibitive.

Dutch, French and UK partners in the ULTIMATE project combined expertise in car design, motion platforms, displays and software to develop a highly cost-effective new simulator design that will allow a more detailed study of human behaviour when driving road vehicles, as well as the trial and development of new aids to improve performance and safety for vehicle users. The ULTIMATE simulator is compact and modular with a choice of conventional screen or head-mounted virtual reality displays supplying information on car performance and visibility - from the very beginning of vehicle development.

Overcoming mechanical constraints

New design and materials were essential to the project. “We needed to overcome the mechanical constraints of earlier simulators to be able to accelerate for a sufficient duration of 1 to 3 sec at 0.1g for example in X and Y axes with a high payload,” explains ULTIMATE project leader Dr Andras Kemeny, head of the Renault Technical Centre for Simulation and Renault’s expert in driving simulation and virtual reality. ULTIMATE took an innovative and particular cost-effective approach, resulting in a low overall weight for the simulator – around 3.5 tonnes. It uses a compact six-axis platform mounted on a second large linear motion bi-directional frame that allows peak accelerations of up to 7 m/s2 in X and Y directions.

Advanced virtual display

An on-board 150° cylindrical screen provides a lightweight display that supplies full motion performance. Alternatively, when physical component integration is impossible or impractical, the driver can use a high-performance, head-mounted display (HMD) that makes it possible to drive in a fully virtual cockpit. The display systems were developed by UK partner SEOS; the HMD in the EUREKA E! 1924 CARDS project. “SEOS was involved in the project from the beginning and contacted Renault for information about track simulation. We became involved as an original partner pulled out. We asked for modifications and encouraged other partners to join. A second EUREKA project – MOVES – will extend the work of ULTIMATE to optimise the software and the motion algorithms. This new project is being led by our ULTIMATE project partner CNRS (the French National Centre for Scientific Research),” says Dr Kemeny. “EUREKA played a crucial role both in providing access to funding and in offering a coherent legal structure for co-operation over the research period. Without such a structure I believe we could not have done this project.”

Catherine Shiels | alfa
Further information:
http://www.eureka.be

More articles from Automotive Engineering:

nachricht The car of the future – sleeper cars and travelling offices too?
18.06.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>