Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized Testing Technology for Higher Quality Automotive Software

02.05.2008
TEMEA research project ensures quality of electronic components in the automotive industry

Under the leadership of Fraunhofer FOKUS and with financial support from the Investitions­bank Berlin, the TEMEA project – Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile – has now taken up its work.

The main aims of the TEMEA project are to meet current and future demands for Quality Assurance in the automotive industry through the development and provision of standardizable testing technologies, and also to substantially lower production costs. Alongside the Fraunhofer Institutes FOKUS and FIRST, the other project partners include IT Power Consultants, Testing Technologies IST GmbH, Fourth Project Consulting and the University of Göttingen.

The project will run for three years; first results are expected in fall 2008.

“In spite of intensive efforts on the part of automobile manufacturers and their suppliers, no solutions have yet been found for dealing with problems arising from the testing and Quality Control of increasingly complex, increasingly networked systems,” says Prof. Dr. Ina Schieferdecker, TEMEA project manager at the Fraunhofer Institute FOKUS, talking about the project background. “For instance, test specifications for test systems and test solutions – many of which are proprietary – cannot be reused – neither between the original equipment manufacturer and supplier nor on a cross-project basis within the company. This leads to an unnecessarily high workload in terms of test specification and implementation, inhibits communication between producer and supplier and prevents reuse of existing test artifacts. The bottom line is that the quality of the whole vehicle suffers.”

The approach adopted by the TEMEA project is specially tailored to meet requirements-driven systematic testing of electronic components and their integration in the automobile. Based on the standardized testing technology TTCN-3, the TEMEA project seeks to develop a uniform test specification technology consisting of textual and graphical means of description for test specification, a flexibly adaptable test implementation and runtime environment, and a configured testing methodology that will satisfy the needs of suppliers and major manufacturers alike. An approach of this kind – which promises to raise the efficiency of Quality Assurance processes for software-intensive systems through standardizable technology and thus to lower their production costs – is something completely new for the automotive industry. A further special feature of the project is that it also covers current automotive industry standards such as AUTOSAR. The main project areas are

• integrated testing of discreet and continuous behavior,
• cross-platform exchange of test definitions (MiL/SiL/HiL),
• support across the whole testing and integration cycle,
• analysis of real-time and reliability requirements,
• testing of AUTOSAR components, and analysis of test quality.

Dr. Gudrun Quandel | alfa
Further information:
http://www.fokus.fraunhofer.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>