Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized Testing Technology for Higher Quality Automotive Software

02.05.2008
TEMEA research project ensures quality of electronic components in the automotive industry

Under the leadership of Fraunhofer FOKUS and with financial support from the Investitions­bank Berlin, the TEMEA project – Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile – has now taken up its work.

The main aims of the TEMEA project are to meet current and future demands for Quality Assurance in the automotive industry through the development and provision of standardizable testing technologies, and also to substantially lower production costs. Alongside the Fraunhofer Institutes FOKUS and FIRST, the other project partners include IT Power Consultants, Testing Technologies IST GmbH, Fourth Project Consulting and the University of Göttingen.

The project will run for three years; first results are expected in fall 2008.

“In spite of intensive efforts on the part of automobile manufacturers and their suppliers, no solutions have yet been found for dealing with problems arising from the testing and Quality Control of increasingly complex, increasingly networked systems,” says Prof. Dr. Ina Schieferdecker, TEMEA project manager at the Fraunhofer Institute FOKUS, talking about the project background. “For instance, test specifications for test systems and test solutions – many of which are proprietary – cannot be reused – neither between the original equipment manufacturer and supplier nor on a cross-project basis within the company. This leads to an unnecessarily high workload in terms of test specification and implementation, inhibits communication between producer and supplier and prevents reuse of existing test artifacts. The bottom line is that the quality of the whole vehicle suffers.”

The approach adopted by the TEMEA project is specially tailored to meet requirements-driven systematic testing of electronic components and their integration in the automobile. Based on the standardized testing technology TTCN-3, the TEMEA project seeks to develop a uniform test specification technology consisting of textual and graphical means of description for test specification, a flexibly adaptable test implementation and runtime environment, and a configured testing methodology that will satisfy the needs of suppliers and major manufacturers alike. An approach of this kind – which promises to raise the efficiency of Quality Assurance processes for software-intensive systems through standardizable technology and thus to lower their production costs – is something completely new for the automotive industry. A further special feature of the project is that it also covers current automotive industry standards such as AUTOSAR. The main project areas are

• integrated testing of discreet and continuous behavior,
• cross-platform exchange of test definitions (MiL/SiL/HiL),
• support across the whole testing and integration cycle,
• analysis of real-time and reliability requirements,
• testing of AUTOSAR components, and analysis of test quality.

Dr. Gudrun Quandel | alfa
Further information:
http://www.fokus.fraunhofer.de

More articles from Automotive Engineering:

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>