Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized Testing Technology for Higher Quality Automotive Software

02.05.2008
TEMEA research project ensures quality of electronic components in the automotive industry

Under the leadership of Fraunhofer FOKUS and with financial support from the Investitions­bank Berlin, the TEMEA project – Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile – has now taken up its work.

The main aims of the TEMEA project are to meet current and future demands for Quality Assurance in the automotive industry through the development and provision of standardizable testing technologies, and also to substantially lower production costs. Alongside the Fraunhofer Institutes FOKUS and FIRST, the other project partners include IT Power Consultants, Testing Technologies IST GmbH, Fourth Project Consulting and the University of Göttingen.

The project will run for three years; first results are expected in fall 2008.

“In spite of intensive efforts on the part of automobile manufacturers and their suppliers, no solutions have yet been found for dealing with problems arising from the testing and Quality Control of increasingly complex, increasingly networked systems,” says Prof. Dr. Ina Schieferdecker, TEMEA project manager at the Fraunhofer Institute FOKUS, talking about the project background. “For instance, test specifications for test systems and test solutions – many of which are proprietary – cannot be reused – neither between the original equipment manufacturer and supplier nor on a cross-project basis within the company. This leads to an unnecessarily high workload in terms of test specification and implementation, inhibits communication between producer and supplier and prevents reuse of existing test artifacts. The bottom line is that the quality of the whole vehicle suffers.”

The approach adopted by the TEMEA project is specially tailored to meet requirements-driven systematic testing of electronic components and their integration in the automobile. Based on the standardized testing technology TTCN-3, the TEMEA project seeks to develop a uniform test specification technology consisting of textual and graphical means of description for test specification, a flexibly adaptable test implementation and runtime environment, and a configured testing methodology that will satisfy the needs of suppliers and major manufacturers alike. An approach of this kind – which promises to raise the efficiency of Quality Assurance processes for software-intensive systems through standardizable technology and thus to lower their production costs – is something completely new for the automotive industry. A further special feature of the project is that it also covers current automotive industry standards such as AUTOSAR. The main project areas are

• integrated testing of discreet and continuous behavior,
• cross-platform exchange of test definitions (MiL/SiL/HiL),
• support across the whole testing and integration cycle,
• analysis of real-time and reliability requirements,
• testing of AUTOSAR components, and analysis of test quality.

Dr. Gudrun Quandel | alfa
Further information:
http://www.fokus.fraunhofer.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>