Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standardized Testing Technology for Higher Quality Automotive Software

02.05.2008
TEMEA research project ensures quality of electronic components in the automotive industry

Under the leadership of Fraunhofer FOKUS and with financial support from the Investitions­bank Berlin, the TEMEA project – Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile – has now taken up its work.

The main aims of the TEMEA project are to meet current and future demands for Quality Assurance in the automotive industry through the development and provision of standardizable testing technologies, and also to substantially lower production costs. Alongside the Fraunhofer Institutes FOKUS and FIRST, the other project partners include IT Power Consultants, Testing Technologies IST GmbH, Fourth Project Consulting and the University of Göttingen.

The project will run for three years; first results are expected in fall 2008.

“In spite of intensive efforts on the part of automobile manufacturers and their suppliers, no solutions have yet been found for dealing with problems arising from the testing and Quality Control of increasingly complex, increasingly networked systems,” says Prof. Dr. Ina Schieferdecker, TEMEA project manager at the Fraunhofer Institute FOKUS, talking about the project background. “For instance, test specifications for test systems and test solutions – many of which are proprietary – cannot be reused – neither between the original equipment manufacturer and supplier nor on a cross-project basis within the company. This leads to an unnecessarily high workload in terms of test specification and implementation, inhibits communication between producer and supplier and prevents reuse of existing test artifacts. The bottom line is that the quality of the whole vehicle suffers.”

The approach adopted by the TEMEA project is specially tailored to meet requirements-driven systematic testing of electronic components and their integration in the automobile. Based on the standardized testing technology TTCN-3, the TEMEA project seeks to develop a uniform test specification technology consisting of textual and graphical means of description for test specification, a flexibly adaptable test implementation and runtime environment, and a configured testing methodology that will satisfy the needs of suppliers and major manufacturers alike. An approach of this kind – which promises to raise the efficiency of Quality Assurance processes for software-intensive systems through standardizable technology and thus to lower their production costs – is something completely new for the automotive industry. A further special feature of the project is that it also covers current automotive industry standards such as AUTOSAR. The main project areas are

• integrated testing of discreet and continuous behavior,
• cross-platform exchange of test definitions (MiL/SiL/HiL),
• support across the whole testing and integration cycle,
• analysis of real-time and reliability requirements,
• testing of AUTOSAR components, and analysis of test quality.

Dr. Gudrun Quandel | alfa
Further information:
http://www.fokus.fraunhofer.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>