Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers to Create Parts of Virtual Crash Test Dummy

15.12.2008
Two teams of engineers with the University of Virginia's Center for Biomechanics will play major roles in the creation of a new "virtual" crash test dummy, one that will live entirely within computers, but will be more realistic than any physical dummy ever subjected to a crash test.

You really can learn a lot from a dummy.

For decades, automakers have been crashing test dummies to gain insight to how various auto safety systems protect – or fail to protect – people during car accidents. But those dummies are made of plastic and steel, not tissue and bone. They can teach only so much.

A new generation of dummies will tell a lot more. An international group of automakers and suppliers has formed a Global Human Body Models Consortium to fund the best minds to build a better dummy.

Two teams of engineers with the University of Virginia's Center for Biomechanics will play major roles in the creation of this new "virtual" dummy, one that will live entirely within computers, but will be more realistic than any physical dummy ever subjected to a crash test.

These will be highly detailed computer dummies – computational models of a full human being – including extreme lifelike detail of the complexities and characteristics of flesh, bones, ligaments, blood vessels and organs.

"Already, cars and their safety systems are designed on computers," said Richard Kent, one of U.Va.'s team leaders on the project and a professor of mechanical and aerospace engineering. "It's logical that we would create a virtual crash test dummy that would allow us to test these safety systems before they are ever physically built."

Kent and his six-member team is charged with creating a highly detailed and realistic computer model of the human thorax and upper extremities, including the ribcage, muscles and ligaments, and the lungs and heart.

Jeff Crandall, a professor of mechanical and aerospace engineering and director of U.Va.'s Center for Applied Biomechanics, is leading another team in the development of a virtual pelvis and lower extremities. The Global Human Body Models Consortium recently awarded the two teams $3 million to complete their projects within the next few years.

Teams of researchers at six other universities and institutes are creating models of other parts of the human body, including the head, neck and abdomen.

"Eventually all of these models will be joined together to create the most sophisticated and lifelike simulation of the entire human body ever assembled for safety testing," said Damien Subit, a U.Va. research scientist working on the model of the thorax.

He said the virtual human will be subjected to nearly infinite virtual crash scenarios to determine in graphic detail what happens to organs, bone and tissue when subjected to forces and impacts from a range of angles at different velocities. Researchers will be able to see, in effect, how a neck breaks in a crash, how a lung is punctured by a broken rib or a liver is bruised or a hip shattered.

"We are creating models, based on the actual anatomic details of the human body, that will respond to stress and strain and impact in the same way the actual human body does, so we can see precisely how injuries occur," Kent said. "The ultimate result will be cars with far better safety systems, minimizing the severity of injuries and the frequency of fatalities."

The advantages of a virtual dummy, compared to the typical physical crash test dummy, are huge. Currently, a typical crash test costs about $5,000 to $100,000. A virtual crash will cost nearly nothing – once the dummy is developed. And a regular physical dummy, with a life span of about 10 years, must be repaired after each crash. A virtual dummy will be, in a sense, immortal, and could be used repeatedly in a far wider range of crash scenarios.

Current physical dummies are built in only three height and weight models, representing an approximation of the many sizes of humans. The virtual dummy eventually will be configured in variable sizes and weights, representing the true range of human body types.

"This will be an adaptable, cost-saving system that will provide amazing insight to body injuries for improving auto safety," Kent said.

He added that the virtual dummy could be useful in other ways as well, such as for the design of safer sporting goods, and in medical schools for students studying trauma injuries.

Contacts: Richard Kent, U.Va. researcher
434-296-7288, ext. 133
rwk3c@virginia.edu

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>