Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving the future of in-vehicle ICT

08.09.2008
Information and communications systems in road vehicles are progressing steadily, but the research community behind these developments remains fragmented. Now a European initiative has linked key knowledge centres and is paving the way for the next generation of ‘joined up’ intelligent vehicle research.

The HUMANIST network set out to integrate Europe’s expertise in the field of Intelligent Transport Systems (ITS) – technology and services for making driving easier and travel safer.

Four years ago, European competence in the field of ITS human-machine interaction was scattered across various countries and research institutes. By building bridges between these isolated pockets of knowledge, researchers can now tap into the expertise of others in the network to enhance the quality, safety and convenience of ITS systems or services, Jean-Pierre Medevielle, HUMANIST’s coordinator, told ICT Results.

The ITS concept was invented some 15 years ago by scientists in Europe, the USA, and Japan. The latter forged ahead and created its own institute on human factor engineering, while Europe and the USA were left behind.

That is, until four years ago.

The network set out to integrate all of the European teams working in this area, and to give the European ITS scientific community "legibility", according to Medevielle, who is the Deputy General Director at the French National Institute for Transport and Safety Research. The EU-funded Network of Excellence now boasts 130 members from 25 organisations.

Vast potential for ITS

The act of driving has changed very little since humans first created the automobile. This is now changing with rapid advances in in-vehicle driver information systems (IVIS) and advanced driver assistance systems (ADAS).

The obvious example of this change is the widespread use of in-vehicle navigation systems, which means the driver does not have to divert as much attention to navigating and searching for signs. Another example is cruise control in cars, which maintains the car’s speed and decreases the driver’s stress.

Listening to weather conditions while driving is also a form of IVIS, as the driver can then anticipate possible critical situations and adjust his or her driving accordingly.

All of these lead to a smoother and safer driving experience.

Further progress depends on understanding how people interact with the technology, and then applying this to IVIS and ADAS. Promoting this human-centred approach was a key issue for the HUMANIST team.

“Many ITS projects are finding their real benefits if the human-machine interaction is focused on a user-centric approach,” says Medevielle.

ITS is being applied to traffic and transport management, in-vehicle information systems, advanced driver assistance systems, and traveller and traffic information services, through embedded or nomadic devices.

It can also enhance interaction between different infrastructures, such as transport and telecommunications, as well as between different transport modes, such as air, rail and road, public and private. Companies can also apply it to fleet management, or freight and logistics management, says Medevielle.

Smoothing the bumps in the roads

Despite the advances in ITS, numerous questions are being raised about how such developments may impact on drivers’ behaviour and attitudes. Advances in assistance systems, for example, mean that technology is now taking over tasks traditionally controlled by the driver.

HUMANIST played a central role in understanding how ITS affects a driver’s behaviour, and has organised several conferences and workshops on the subject. These events brought together leading researchers in the field and promoted the exchange of knowledge.

A book, ‘Critical Issues in Advanced Automotive Systems and Human-Centred Design’, has also been produced by the network, which Medevielle says is “considered the reference document” in the field.

Self-sufficiency and the future

The four-year project drew to a close earlier this year, but to ensure the future of ITS research in Europe a self-sustaining Virtual Centre of Excellence was created.

"This means that the community will operate as a virtual institute, and not a joint or merged institute," Medevielle explains. "It will continue the work of HUMANIST by renewing the strategic research agenda, sharing new knowledge and a joint vision of the scientific future of the domain, and boosting the new generation of scientists through ad hoc training, in-depth education and the immersion of young scientists in the world of their elders.”

To further the exchange of information among researchers, the network has created a cycle of open scientific conferences with participants coming from Europe, Japan, Australia, Canada, and the USA.

Self-sufficiency will be achieved through different activities, including providing services and training activities for professionals on a commercial basis to other members or external clients.

The HUMANIST network received funding from the EU’s Sixth Framework Programme for research dealing with human-centred design for IVIS and ADAS systems.

By establishing the Virtual Centre of Excellence, the HUMANIST members will continue the substantial progress already made in this field, and help to establish Europe as a driving force in in-vehicle, ICT-based systems.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89997

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>