Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to build 'self-healing' house for earthquake protection

05.04.2007
To build an intelligent high-tech villa that can resist earthquakes by 'self-healing' cracks in its own walls and monitoring vibrations through sensors is the goal of the new EU funded project Intelligent Safe and Secure Buildings (ISSB).

The project will develop special walls with 'self-healing' properties made of nano polymer particles which turn into a liquid when squeezed under pressure. The liquid will then flow into the cracks, and harden to form a solid material.

The NanoManufacturing Institute (NMI), based at Leeds University, UK, is playing a key role in the €14 million project, the aim of which is to construct the intelligent regenerative home on a Greek mountainside by December 2010.

The project's coordinator, Professor Terry Wilkins from the NMI, explained: 'What we're trying to achieve here is very exciting; we're looking to use polymers in much tougher situations than ever before on a larger scale.'

The 'self-healing' polymers will be made thanks to nanotechnology, which involves making things on a tiny scale - less than one-hundred thousandth the width of a human hair.

If the experiment proves successful, more earthquake-resistant homes could be built in danger zones known for their seismic activity across the globe.

The project will first build the walls of the house from novel load-bearing steel frames and high-strength gypsum board. The second novelty will be the insertion of wireless, battery-less sensors and radio frequency identity (RFID) tags into these walls to collect large amounts of data on the stresses and vibrations, temperature, humidity and gas levels affecting the building. If a problem such as an earthquake should occur, the intelligent sensor network will alert residents immediately, giving them time to escape to safety.

Professor Wilkins added: 'If whole groups of houses are so constructed, we could use a larger network of sensors to get even more information. Then if the house falls down, we have got hand-held devices that can be used over the rubble to pick out where the embedded sensors are hidden to get information about how the villa collapsed and about anyone who may be around, so it potentially becomes a tool for rescue.'

Dr Roger Gregory, a partner involved in the potentially life-saving project, said: 'Leeds are world leaders in designing wireless networks for extreme environments and hard-to-access places. Even if the building totally collapsed, the sensors would still let you pinpoint the source of the fault.'

Professor Wilkins concluded: 'Once we have the optimum design, we could quickly start producing thousands of litres of nanoparticle fluid, adding just a tiny percentage to the gypsum mix.'

Virginia Mercouri | alfa
Further information:
http://www.leeds.ac.uk/nmi/
http://cordis.europa.eu/news

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>