Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to build 'self-healing' house for earthquake protection

05.04.2007
To build an intelligent high-tech villa that can resist earthquakes by 'self-healing' cracks in its own walls and monitoring vibrations through sensors is the goal of the new EU funded project Intelligent Safe and Secure Buildings (ISSB).

The project will develop special walls with 'self-healing' properties made of nano polymer particles which turn into a liquid when squeezed under pressure. The liquid will then flow into the cracks, and harden to form a solid material.

The NanoManufacturing Institute (NMI), based at Leeds University, UK, is playing a key role in the €14 million project, the aim of which is to construct the intelligent regenerative home on a Greek mountainside by December 2010.

The project's coordinator, Professor Terry Wilkins from the NMI, explained: 'What we're trying to achieve here is very exciting; we're looking to use polymers in much tougher situations than ever before on a larger scale.'

The 'self-healing' polymers will be made thanks to nanotechnology, which involves making things on a tiny scale - less than one-hundred thousandth the width of a human hair.

If the experiment proves successful, more earthquake-resistant homes could be built in danger zones known for their seismic activity across the globe.

The project will first build the walls of the house from novel load-bearing steel frames and high-strength gypsum board. The second novelty will be the insertion of wireless, battery-less sensors and radio frequency identity (RFID) tags into these walls to collect large amounts of data on the stresses and vibrations, temperature, humidity and gas levels affecting the building. If a problem such as an earthquake should occur, the intelligent sensor network will alert residents immediately, giving them time to escape to safety.

Professor Wilkins added: 'If whole groups of houses are so constructed, we could use a larger network of sensors to get even more information. Then if the house falls down, we have got hand-held devices that can be used over the rubble to pick out where the embedded sensors are hidden to get information about how the villa collapsed and about anyone who may be around, so it potentially becomes a tool for rescue.'

Dr Roger Gregory, a partner involved in the potentially life-saving project, said: 'Leeds are world leaders in designing wireless networks for extreme environments and hard-to-access places. Even if the building totally collapsed, the sensors would still let you pinpoint the source of the fault.'

Professor Wilkins concluded: 'Once we have the optimum design, we could quickly start producing thousands of litres of nanoparticle fluid, adding just a tiny percentage to the gypsum mix.'

Virginia Mercouri | alfa
Further information:
http://www.leeds.ac.uk/nmi/
http://cordis.europa.eu/news

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>