Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists to build 'self-healing' house for earthquake protection

To build an intelligent high-tech villa that can resist earthquakes by 'self-healing' cracks in its own walls and monitoring vibrations through sensors is the goal of the new EU funded project Intelligent Safe and Secure Buildings (ISSB).

The project will develop special walls with 'self-healing' properties made of nano polymer particles which turn into a liquid when squeezed under pressure. The liquid will then flow into the cracks, and harden to form a solid material.

The NanoManufacturing Institute (NMI), based at Leeds University, UK, is playing a key role in the €14 million project, the aim of which is to construct the intelligent regenerative home on a Greek mountainside by December 2010.

The project's coordinator, Professor Terry Wilkins from the NMI, explained: 'What we're trying to achieve here is very exciting; we're looking to use polymers in much tougher situations than ever before on a larger scale.'

The 'self-healing' polymers will be made thanks to nanotechnology, which involves making things on a tiny scale - less than one-hundred thousandth the width of a human hair.

If the experiment proves successful, more earthquake-resistant homes could be built in danger zones known for their seismic activity across the globe.

The project will first build the walls of the house from novel load-bearing steel frames and high-strength gypsum board. The second novelty will be the insertion of wireless, battery-less sensors and radio frequency identity (RFID) tags into these walls to collect large amounts of data on the stresses and vibrations, temperature, humidity and gas levels affecting the building. If a problem such as an earthquake should occur, the intelligent sensor network will alert residents immediately, giving them time to escape to safety.

Professor Wilkins added: 'If whole groups of houses are so constructed, we could use a larger network of sensors to get even more information. Then if the house falls down, we have got hand-held devices that can be used over the rubble to pick out where the embedded sensors are hidden to get information about how the villa collapsed and about anyone who may be around, so it potentially becomes a tool for rescue.'

Dr Roger Gregory, a partner involved in the potentially life-saving project, said: 'Leeds are world leaders in designing wireless networks for extreme environments and hard-to-access places. Even if the building totally collapsed, the sensors would still let you pinpoint the source of the fault.'

Professor Wilkins concluded: 'Once we have the optimum design, we could quickly start producing thousands of litres of nanoparticle fluid, adding just a tiny percentage to the gypsum mix.'

Virginia Mercouri | alfa
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>